Введите задачу...
Математический анализ Примеры
Step 1
Запишем в виде функции.
Step 2
По правилу суммы производная по имеет вид .
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Поскольку является константой относительно , производная относительно равна .
Добавим и .
Step 3
Поскольку является константой относительно , производная по равна .
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Умножим на .
Step 4
Чтобы найти локальные максимумы и минимумы функции, приравняем производную к и решим полученное уравнение.
Step 5
Найдем первую производную.
По правилу суммы производная по имеет вид .
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Поскольку является константой относительно , производная относительно равна .
Добавим и .
Первая производная по равна .
Step 6
Пусть первая производная равна .
Разделим каждый член на и упростим.
Разделим каждый член на .
Упростим левую часть.
Сократим общий множитель .
Сократим общий множитель.
Разделим на .
Упростим правую часть.
Разделим на .
Step 7
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Step 8
Критические точки, которые необходимо вычислить.
Step 9
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Step 10
— локальный минимум, так как вторая производная положительная. Это называется тестом второй производной.
— локальный минимум
Step 11
Заменим в этом выражении переменную на .
Упростим результат.
Возведение в любую положительную степень дает .
Вычтем из .
Окончательный ответ: .
Step 12
Это локальные экстремумы .
— локальный минимум
Step 13