Введите задачу...
Математический анализ Примеры
Step 1
Запишем в виде функции.
Step 2
По правилу суммы производная по имеет вид .
Найдем значение .
Поскольку является константой относительно , производная по равна .
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Умножим на .
Найдем значение .
Поскольку является константой относительно , производная по равна .
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Умножим на .
Изменим порядок членов.
Step 3
По правилу суммы производная по имеет вид .
Найдем значение .
Поскольку является константой относительно , производная по равна .
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Умножим на .
Продифференцируем, используя правило константы.
Поскольку является константой относительно , производная относительно равна .
Добавим и .
Step 4
Чтобы найти локальные максимумы и минимумы функции, приравняем производную к и решим полученное уравнение.
Step 5
Найдем первую производную.
По правилу суммы производная по имеет вид .
Найдем значение .
Поскольку является константой относительно , производная по равна .
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Умножим на .
Найдем значение .
Поскольку является константой относительно , производная по равна .
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Умножим на .
Изменим порядок членов.
Первая производная по равна .
Step 6
Пусть первая производная равна .
Вычтем из обеих частей уравнения.
Разделим каждый член на и упростим.
Разделим каждый член на .
Упростим левую часть.
Сократим общий множитель .
Сократим общий множитель.
Разделим на .
Упростим правую часть.
Разделим на .
Возьмем квадратный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Упростим .
Перепишем в виде .
Вынесем множитель из .
Перепишем в виде .
Вынесем члены из-под знака корня.
Полное решение является результатом как положительных, так и отрицательных частей решения.
Сначала с помощью положительного значения найдем первое решение.
Затем, используя отрицательное значение , найдем второе решение.
Полное решение является результатом как положительных, так и отрицательных частей решения.
Step 7
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Step 8
Критические точки, которые необходимо вычислить.
Step 9
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Step 10
Умножим на .
Умножим на .
Step 11
— локальный максимум, так как вторая производная отрицательная. Это называется тестом второй производной.
— локальный максимум
Step 12
Заменим в этом выражении переменную на .
Упростим результат.
Упростим каждый член.
Умножим на .
Применим правило умножения к .
Возведем в степень .
Перепишем в виде .
Возведем в степень .
Перепишем в виде .
Вынесем множитель из .
Перепишем в виде .
Вынесем члены из-под знака корня.
Умножим на .
Умножим .
Умножим на .
Умножим на .
Вычтем из .
Окончательный ответ: .
Step 13
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Step 14
Умножим на .
Умножим на .
Step 15
— локальный минимум, так как вторая производная положительная. Это называется тестом второй производной.
— локальный минимум
Step 16
Заменим в этом выражении переменную на .
Упростим результат.
Упростим каждый член.
Умножим на .
Применим правило умножения к .
Возведем в степень .
Перепишем в виде .
Возведем в степень .
Перепишем в виде .
Вынесем множитель из .
Перепишем в виде .
Вынесем члены из-под знака корня.
Умножим на .
Умножим .
Умножим на .
Умножим на .
Добавим и .
Окончательный ответ: .
Step 17
Это локальные экстремумы .
— локальный максимум
— локальный минимум
Step 18