Математический анализ Примеры

Найти точки перегиба f(x)=x квадратный корень из x^2+36
Step 1
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Найдем первую производную.
Нажмите для увеличения количества этапов...
С помощью запишем в виде .
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Чтобы применить цепное правило, зададим как .
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Заменим все вхождения на .
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Объединим и .
Объединим числители над общим знаменателем.
Упростим числитель.
Нажмите для увеличения количества этапов...
Умножим на .
Вычтем из .
Объединим дроби.
Нажмите для увеличения количества этапов...
Вынесем знак минуса перед дробью.
Объединим и .
Перенесем в знаменатель, используя правило отрицательных степеней .
Объединим и .
По правилу суммы производная по имеет вид .
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Поскольку является константой относительно , производная относительно равна .
Объединим дроби.
Нажмите для увеличения количества этапов...
Добавим и .
Объединим и .
Объединим и .
Возведем в степень .
Возведем в степень .
Применим правило степени для объединения показателей.
Сократим выражение, путем отбрасывания общих множителей.
Нажмите для увеличения количества этапов...
Добавим и .
Сократим общий множитель.
Перепишем это выражение.
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Умножим на .
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Объединим числители над общим знаменателем.
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Применим правило степени для объединения показателей.
Объединим числители над общим знаменателем.
Добавим и .
Разделим на .
Упростим .
Добавим и .
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Продифференцируем, используя правило частного, которое гласит, что имеет вид , где и .
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Применим правило степени и перемножим показатели, .
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Сократим общий множитель.
Перепишем это выражение.
Упростим.
Продифференцируем.
Нажмите для увеличения количества этапов...
По правилу суммы производная по имеет вид .
Поскольку является константой относительно , производная по равна .
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Умножим на .
Поскольку является константой относительно , производная относительно равна .
Упростим выражение.
Нажмите для увеличения количества этапов...
Добавим и .
Перенесем влево от .
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Чтобы применить цепное правило, зададим как .
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Заменим все вхождения на .
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Объединим и .
Объединим числители над общим знаменателем.
Упростим числитель.
Нажмите для увеличения количества этапов...
Умножим на .
Вычтем из .
Объединим дроби.
Нажмите для увеличения количества этапов...
Вынесем знак минуса перед дробью.
Объединим и .
Перенесем в знаменатель, используя правило отрицательных степеней .
По правилу суммы производная по имеет вид .
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Поскольку является константой относительно , производная относительно равна .
Упростим члены.
Нажмите для увеличения количества этапов...
Добавим и .
Объединим и .
Объединим и .
Сократим общий множитель.
Перепишем это выражение.
Упростим.
Нажмите для увеличения количества этапов...
Применим свойство дистрибутивности.
Упростим числитель.
Нажмите для увеличения количества этапов...
Упростим каждый член.
Нажмите для увеличения количества этапов...
Умножим на .
Умножим на .
Умножим на .
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Вынесем множитель из .
Вынесем множитель из .
Вынесем множитель из .
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Объединим числители над общим знаменателем.
Перепишем в разложенном на множители виде.
Нажмите для увеличения количества этапов...
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Вынесем множитель из .
Вынесем множитель из .
Вынесем множитель из .
Объединим показатели степеней.
Нажмите для увеличения количества этапов...
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Перенесем .
Применим правило степени для объединения показателей.
Объединим числители над общим знаменателем.
Добавим и .
Разделим на .
Упростим .
Упростим числитель.
Нажмите для увеличения количества этапов...
Применим свойство дистрибутивности.
Умножим на .
Вычтем из .
Вычтем из .
Объединим термины.
Нажмите для увеличения количества этапов...
Перепишем в виде произведения.
Умножим на .
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Умножим на .
Нажмите для увеличения количества этапов...
Возведем в степень .
Применим правило степени для объединения показателей.
Запишем в виде дроби с общим знаменателем.
Объединим числители над общим знаменателем.
Добавим и .
Вторая производная по равна .
Step 2
Приравняем вторую производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Пусть вторая производная равна .
Приравняем числитель к нулю.
Решим уравнение относительно .
Нажмите для увеличения количества этапов...
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Приравняем к .
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Приравняем к .
Решим относительно .
Нажмите для увеличения количества этапов...
Вычтем из обеих частей уравнения.
Возьмем квадратный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Упростим .
Нажмите для увеличения количества этапов...
Перепишем в виде .
Перепишем в виде .
Перепишем в виде .
Перепишем в виде .
Нажмите для увеличения количества этапов...
Вынесем множитель из .
Перепишем в виде .
Вынесем члены из-под знака корня.
Перенесем влево от .
Полное решение является результатом как положительных, так и отрицательных частей решения.
Нажмите для увеличения количества этапов...
Сначала с помощью положительного значения найдем первое решение.
Затем, используя отрицательное значение , найдем второе решение.
Полное решение является результатом как положительных, так и отрицательных частей решения.
Окончательным решением являются все значения, при которых верно.
Step 3
Найдем точки, в которых вторая производная равна .
Нажмите для увеличения количества этапов...
Подставим в , чтобы найти значение .
Нажмите для увеличения количества этапов...
Заменим в этом выражении переменную на .
Упростим результат.
Нажмите для увеличения количества этапов...
Возведение в любую положительную степень дает .
Добавим и .
Перепишем в виде .
Умножим.
Нажмите для увеличения количества этапов...
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Умножим на .
Окончательный ответ: .
Подставляя в , найдем точку . Эта точка может быть точкой перегиба.
Step 4
Разобьем на интервалы вокруг точек, которые могут быть точками перегиба.
Step 5
Подставим значение из интервала во вторую производную, чтобы определить, возрастает она или убывает.
Нажмите для увеличения количества этапов...
Заменим в этом выражении переменную на .
Упростим результат.
Нажмите для увеличения количества этапов...
Упростим числитель.
Нажмите для увеличения количества этапов...
Умножим на .
Умножим на .
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Возведем в степень .
Добавим и .
Перепишем в виде .
Применим правило степени и перемножим показатели, .
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Сократим общий множитель.
Перепишем это выражение.
Возведем в степень .
Разделим на .
Окончательный ответ: .
При вторая производная имеет вид . Поскольку это отрицательная величина, вторая производная уменьшается на интервале .
Убывание на , так как
Убывание на , так как
Step 6
Подставим значение из интервала во вторую производную, чтобы определить, возрастает она или убывает.
Нажмите для увеличения количества этапов...
Заменим в этом выражении переменную на .
Упростим результат.
Нажмите для увеличения количества этапов...
Упростим числитель.
Нажмите для увеличения количества этапов...
Умножим на .
Умножим на .
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Возведем в степень .
Добавим и .
Перепишем в виде .
Применим правило степени и перемножим показатели, .
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Сократим общий множитель.
Перепишем это выражение.
Возведем в степень .
Разделим на .
Окончательный ответ: .
При вторая производная имеет вид . Поскольку это положительная величина, вторая производная возрастает на интервале .
Возрастание в области , так как
Возрастание в области , так как
Step 7
Точка перегиба — это точка на кривой, в которой вогнутость меняет знак с плюса на минус или с минуса на плюс. В этом случае точкой перегиба является точка .
Step 8
Файлы cookie и конфиденциальность
На этом сайте используются файлы cookie, чтобы сделать использование ресурса наиболее эффективным.
Дополнительная информация