Математический анализ Примеры

Оценить предел предел (x^2-64)/(2x^2+17x+8), если x стремится к -8
Step 1
Применим правило Лопиталя.
Нажмите для увеличения количества этапов...
Найдем предел числителя и предел знаменателя.
Нажмите для увеличения количества этапов...
Возьмем предел числителя и предел знаменателя.
Найдем предел числителя.
Нажмите для увеличения количества этапов...
Вычислим предел.
Нажмите для увеличения количества этапов...
Разобьем предел с помощью правила суммы пределов при стремлении к .
Вынесем степень в выражении из-под знака предела по правилу степени для пределов.
Найдем предел , который является константой по мере приближения к .
Найдем предел , подставив значение для .
Упростим ответ.
Нажмите для увеличения количества этапов...
Упростим каждый член.
Нажмите для увеличения количества этапов...
Возведем в степень .
Умножим на .
Вычтем из .
Найдем предел знаменателя.
Нажмите для увеличения количества этапов...
Разобьем предел с помощью правила суммы пределов при стремлении к .
Вынесем член из-под знака предела, так как он не зависит от .
Вынесем степень в выражении из-под знака предела по правилу степени для пределов.
Вынесем член из-под знака предела, так как он не зависит от .
Найдем предел , который является константой по мере приближения к .
Найдем значения пределов, подставив значение для всех вхождений .
Нажмите для увеличения количества этапов...
Найдем предел , подставив значение для .
Найдем предел , подставив значение для .
Упростим ответ.
Нажмите для увеличения количества этапов...
Упростим каждый член.
Нажмите для увеличения количества этапов...
Возведем в степень .
Умножим на .
Умножим на .
Вычтем из .
Добавим и .
Выражение содержит деление на . Выражение не определено.
Неопределенные
Выражение содержит деление на . Выражение не определено.
Неопределенные
Выражение содержит деление на . Выражение не определено.
Неопределенные
Поскольку является неопределенной формой, применяется правило Лопиталя. Правило Лопиталя гласит, что предел отношения функций равен пределу отношения их производных.
Найдем производную числителя и знаменателя.
Нажмите для увеличения количества этапов...
Продифференцируем числитель и знаменатель.
По правилу суммы производная по имеет вид .
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Поскольку является константой относительно , производная относительно равна .
Добавим и .
По правилу суммы производная по имеет вид .
Найдем значение .
Нажмите для увеличения количества этапов...
Поскольку является константой относительно , производная по равна .
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Умножим на .
Найдем значение .
Нажмите для увеличения количества этапов...
Поскольку является константой относительно , производная по равна .
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Умножим на .
Поскольку является константой относительно , производная относительно равна .
Добавим и .
Step 2
Вычислим предел.
Нажмите для увеличения количества этапов...
Вынесем член из-под знака предела, так как он не зависит от .
Разобьем предел с помощью правила частного пределов при стремлении к .
Разобьем предел с помощью правила суммы пределов при стремлении к .
Вынесем член из-под знака предела, так как он не зависит от .
Найдем предел , который является константой по мере приближения к .
Step 3
Найдем значения пределов, подставив значение для всех вхождений .
Нажмите для увеличения количества этапов...
Найдем предел , подставив значение для .
Найдем предел , подставив значение для .
Step 4
Упростим ответ.
Нажмите для увеличения количества этапов...
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Умножим на .
Добавим и .
Деление двух отрицательных значений дает положительное значение.
Умножим .
Нажмите для увеличения количества этапов...
Объединим и .
Умножим на .
Step 5
Результат можно представить в различном виде.
Точная форма:
Десятичная форма:
Файлы cookie и конфиденциальность
На этом сайте используются файлы cookie, чтобы сделать использование ресурса наиболее эффективным.
Дополнительная информация