Введите задачу...
Математический анализ Примеры
Step 1
Найдем вторую производную.
Найдем первую производную.
Продифференцируем.
По правилу суммы производная по имеет вид .
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Найдем значение .
Поскольку является константой относительно , производная по равна .
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Умножим на .
Найдем вторую производную.
По правилу суммы производная по имеет вид .
Найдем значение .
Поскольку является константой относительно , производная по равна .
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Умножим на .
Найдем значение .
Поскольку является константой относительно , производная по равна .
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Умножим на .
Вторая производная по равна .
Приравняем вторую производную к , затем найдем решение уравнения .
Пусть вторая производная равна .
Вынесем множитель из .
Вынесем множитель из .
Вынесем множитель из .
Вынесем множитель из .
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Приравняем к .
Приравняем к , затем решим относительно .
Приравняем к .
Добавим к обеим частям уравнения.
Окончательным решением являются все значения, при которых верно.
Step 2
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Интервальное представление:
Обозначение построения множества:
Step 3
Создадим интервалы вокруг значений , в которых вторая производная равна нулю или не определена.
Step 4
Заменим в этом выражении переменную на .
Упростим результат.
Упростим каждый член.
Возведем в степень .
Умножим на .
Умножим на .
Добавим и .
Окончательный ответ: .
График вогнут вверх на интервале , поскольку имеет положительное значение.
Вогнутость вверх на интервале , поскольку больше нуля
Вогнутость вверх на интервале , поскольку больше нуля
Step 5
Заменим в этом выражении переменную на .
Упростим результат.
Упростим каждый член.
Единица в любой степени равна единице.
Умножим на .
Умножим на .
Вычтем из .
Окончательный ответ: .
График вогнут вниз на интервале , поскольку имеет отрицательное значение.
Вогнутость вниз на интервале , поскольку меньше нуля
Вогнутость вниз на интервале , поскольку меньше нуля
Step 6
Заменим в этом выражении переменную на .
Упростим результат.
Упростим каждый член.
Возведем в степень .
Умножим на .
Умножим на .
Вычтем из .
Окончательный ответ: .
График вогнут вверх на интервале , поскольку имеет положительное значение.
Вогнутость вверх на интервале , поскольку больше нуля
Вогнутость вверх на интервале , поскольку больше нуля
Step 7
График вогнут вниз, когда вторая производная отрицательна, и вогнут вверх, когда вторая производная положительна.
Вогнутость вверх на интервале , поскольку больше нуля
Вогнутость вниз на интервале , поскольку меньше нуля
Вогнутость вверх на интервале , поскольку больше нуля
Step 8