Введите задачу...
Алгебра Примеры
Этап 1
Дискриминант квадратного уравнения ― это выражение под знаком корня в формуле для корней квадратного уравнения.
Этап 2
Подставим значения , и .
Этап 3
Упростим каждый член.
Возведение в любую положительную степень дает .
Умножим .
Умножим на .
Умножим на .
Добавим и .
Этап 4
Характер корней квадратного уравнения может быть отнесен к одной из трех категорий в зависимости от значения дискриминанта :
означает, что существуют различные вещественные корни .
означает, что существуют одинаковые вещественные корни или отдельный вещественный корень .
означает, что вещественных корней нет, но комплексных корней — .
Поскольку дискриминант больше , имеются два вещественных корня.
Два вещественных корня