Cálculo Exemplos

Encontre a Concavidade logaritmo natural de x^2+16
Step 1
Escreva como uma função.
Step 2
Find the values where the second derivative is equal to .
Toque para ver mais passagens...
Encontre a segunda derivada.
Toque para ver mais passagens...
Encontre a primeira derivada.
Toque para ver mais passagens...
Diferencie usando a regra da cadeia, que determina que é , em que e .
Toque para ver mais passagens...
Para aplicar a regra da cadeia, defina como .
A derivada de em relação a é .
Substitua todas as ocorrências de por .
Diferencie.
Toque para ver mais passagens...
De acordo com a regra da soma, a derivada de com relação a é .
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Como é constante em relação a , a derivada de em relação a é .
Combine frações.
Toque para ver mais passagens...
Some e .
Combine e .
Combine e .
Encontre a segunda derivada.
Toque para ver mais passagens...
Como é constante em relação a , a derivada de em relação a é .
Diferencie usando a regra do quociente, que determina que é , em que e .
Diferencie.
Toque para ver mais passagens...
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Multiplique por .
De acordo com a regra da soma, a derivada de com relação a é .
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Como é constante em relação a , a derivada de em relação a é .
Simplifique a expressão.
Toque para ver mais passagens...
Some e .
Multiplique por .
Eleve à potência de .
Eleve à potência de .
Use a regra da multiplicação de potências para combinar expoentes.
Some e .
Subtraia de .
Combine e .
Simplifique.
Toque para ver mais passagens...
Aplique a propriedade distributiva.
Simplifique cada termo.
Toque para ver mais passagens...
Multiplique por .
Multiplique por .
A segunda derivada de com relação a é .
Defina a segunda derivada como igual a e resolva a equação .
Toque para ver mais passagens...
Defina a segunda derivada como igual a .
Defina o numerador como igual a zero.
Resolva a equação para .
Toque para ver mais passagens...
Subtraia dos dois lados da equação.
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Divida cada termo em por .
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Cancele o fator comum de .
Toque para ver mais passagens...
Cancele o fator comum.
Divida por .
Simplifique o lado direito.
Toque para ver mais passagens...
Divida por .
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Simplifique .
Toque para ver mais passagens...
Reescreva como .
Elimine os termos abaixo do radical, presumindo que sejam números reais positivos.
A solução completa é resultado das partes positiva e negativa da solução.
Toque para ver mais passagens...
Primeiro, use o valor positivo de para encontrar a primeira solução.
Depois, use o valor negativo de para encontrar a segunda solução.
A solução completa é resultado das partes positiva e negativa da solução.
Step 3
Encontre o domínio de .
Toque para ver mais passagens...
Defina o argumento em como maior do que para encontrar onde a expressão está definida.
Resolva .
Toque para ver mais passagens...
Subtraia dos dois lados da desigualdade.
Como o lado esquerdo tem uma potência par, ele é sempre positivo para todos os números reais.
Todos os números reais
Todos os números reais
O domínio da expressão consiste em todos os números reais, exceto quando a expressão é indefinida. Nesse caso, não existe um número real que torne a expressão indefinida.
Notação de intervalo:
Notação de construtor de conjuntos:
Notação de intervalo:
Notação de construtor de conjuntos:
Step 4
Crie intervalos em torno dos valores , em que a segunda derivada é zero ou indefinida.
Step 5
Substitua qualquer número do intervalo na segunda derivada e avalie para determinar a concavidade.
Toque para ver mais passagens...
Substitua a variável por na expressão.
Simplifique o resultado.
Toque para ver mais passagens...
Simplifique o numerador.
Toque para ver mais passagens...
Eleve à potência de .
Multiplique por .
Some e .
Simplifique o denominador.
Toque para ver mais passagens...
Eleve à potência de .
Some e .
Eleve à potência de .
Reduza a expressão cancelando os fatores comuns.
Toque para ver mais passagens...
Cancele o fator comum de e .
Toque para ver mais passagens...
Fatore de .
Cancele os fatores comuns.
Toque para ver mais passagens...
Fatore de .
Cancele o fator comum.
Reescreva a expressão.
Mova o número negativo para a frente da fração.
A resposta final é .
O gráfico tem concavidade para baixo no intervalo porque é negativo.
Concavidade para baixo em , já que é negativo
Concavidade para baixo em , já que é negativo
Step 6
Substitua qualquer número do intervalo na segunda derivada e avalie para determinar a concavidade.
Toque para ver mais passagens...
Substitua a variável por na expressão.
Simplifique o resultado.
Toque para ver mais passagens...
Simplifique o numerador.
Toque para ver mais passagens...
Elevar a qualquer potência positiva produz .
Multiplique por .
Some e .
Simplifique o denominador.
Toque para ver mais passagens...
Elevar a qualquer potência positiva produz .
Some e .
Eleve à potência de .
Cancele o fator comum de e .
Toque para ver mais passagens...
Fatore de .
Cancele os fatores comuns.
Toque para ver mais passagens...
Fatore de .
Cancele o fator comum.
Reescreva a expressão.
A resposta final é .
O gráfico tem concavidade para cima no intervalo porque é positivo.
Concavidade para cima em , já que é positivo
Concavidade para cima em , já que é positivo
Step 7
Substitua qualquer número do intervalo na segunda derivada e avalie para determinar a concavidade.
Toque para ver mais passagens...
Substitua a variável por na expressão.
Simplifique o resultado.
Toque para ver mais passagens...
Simplifique o numerador.
Toque para ver mais passagens...
Eleve à potência de .
Multiplique por .
Some e .
Simplifique o denominador.
Toque para ver mais passagens...
Eleve à potência de .
Some e .
Eleve à potência de .
Reduza a expressão cancelando os fatores comuns.
Toque para ver mais passagens...
Cancele o fator comum de e .
Toque para ver mais passagens...
Fatore de .
Cancele os fatores comuns.
Toque para ver mais passagens...
Fatore de .
Cancele o fator comum.
Reescreva a expressão.
Mova o número negativo para a frente da fração.
A resposta final é .
O gráfico tem concavidade para baixo no intervalo porque é negativo.
Concavidade para baixo em , já que é negativo
Concavidade para baixo em , já que é negativo
Step 8
O gráfico tem concavidade para baixo quando a segunda derivada é negativa e concavidade para cima quando a segunda derivada é positiva.
Concavidade para baixo em , já que é negativo
Concavidade para cima em , já que é positivo
Concavidade para baixo em , já que é negativo
Step 9
Cookies e privacidade
Este site usa cookies para garantir que você tenha a melhor experiência.
Mais informações