Insira um problema...
Cálculo Exemplos
Step 1
Como é constante em relação a , a derivada de em relação a é .
Diferencie usando a regra do produto, que determina que é , em que e .
A derivada de em relação a é .
Eleve à potência de .
Eleve à potência de .
Use a regra da multiplicação de potências para combinar expoentes.
Some e .
A derivada de em relação a é .
Eleve à potência de .
Eleve à potência de .
Use a regra da multiplicação de potências para combinar expoentes.
Some e .
Simplifique.
Aplique a propriedade distributiva.
Multiplique por .
Step 2
De acordo com a regra da soma, a derivada de com relação a é .
Avalie .
Como é constante em relação a , a derivada de em relação a é .
Diferencie usando a regra da cadeia, que determina que é , em que e .
Para aplicar a regra da cadeia, defina como .
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Substitua todas as ocorrências de por .
A derivada de em relação a é .
Multiplique por .
Avalie .
Como é constante em relação a , a derivada de em relação a é .
Diferencie usando a regra da cadeia, que determina que é , em que e .
Para aplicar a regra da cadeia, defina como .
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Substitua todas as ocorrências de por .
A derivada de em relação a é .
Multiplique por .
Multiplique por .
Combine os termos.
Reordene os fatores de .
Subtraia de .