Cálculo Exemplos

Encontre o Máximo e Mínimo Local f(x)=x^2-3x+6
Step 1
Encontre a primeira derivada da função.
Toque para ver mais passagens...
Diferencie.
Toque para ver mais passagens...
De acordo com a regra da soma, a derivada de com relação a é .
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Avalie .
Toque para ver mais passagens...
Como é constante em relação a , a derivada de em relação a é .
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Multiplique por .
Diferencie usando a regra da constante.
Toque para ver mais passagens...
Como é constante em relação a , a derivada de em relação a é .
Some e .
Step 2
Encontre a segunda derivada da função.
Toque para ver mais passagens...
De acordo com a regra da soma, a derivada de com relação a é .
Avalie .
Toque para ver mais passagens...
Como é constante em relação a , a derivada de em relação a é .
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Multiplique por .
Diferencie usando a regra da constante.
Toque para ver mais passagens...
Como é constante em relação a , a derivada de em relação a é .
Some e .
Step 3
Para encontrar os valores máximo local e mínimo local da função, defina a derivada como igual a e resolva.
Step 4
Encontre a primeira derivada.
Toque para ver mais passagens...
Encontre a primeira derivada.
Toque para ver mais passagens...
Diferencie.
Toque para ver mais passagens...
De acordo com a regra da soma, a derivada de com relação a é .
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Avalie .
Toque para ver mais passagens...
Como é constante em relação a , a derivada de em relação a é .
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Multiplique por .
Diferencie usando a regra da constante.
Toque para ver mais passagens...
Como é constante em relação a , a derivada de em relação a é .
Some e .
A primeira derivada de com relação a é .
Step 5
Defina a primeira derivada como igual a e resolva a equação .
Toque para ver mais passagens...
Defina a primeira derivada como igual a .
Some aos dois lados da equação.
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Divida cada termo em por .
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Cancele o fator comum de .
Toque para ver mais passagens...
Cancele o fator comum.
Divida por .
Step 6
Encontre os valores em que a derivada é indefinida.
Toque para ver mais passagens...
O domínio da expressão consiste em todos os números reais, exceto quando a expressão é indefinida. Nesse caso, não existe um número real que torne a expressão indefinida.
Step 7
Pontos críticos para avaliar.
Step 8
Avalie a segunda derivada em . Se a segunda derivada for positiva, este será um mínimo local. Se for negativa, será um máximo local.
Step 9
é um mínimo local, porque o valor da segunda derivada é positivo. Isso é conhecido como teste da segunda derivada.
é um mínimo local
Step 10
Encontre o valor y quando .
Toque para ver mais passagens...
Substitua a variável por na expressão.
Simplifique o resultado.
Toque para ver mais passagens...
Simplifique cada termo.
Toque para ver mais passagens...
Aplique a regra do produto a .
Eleve à potência de .
Eleve à potência de .
Multiplique .
Toque para ver mais passagens...
Combine e .
Multiplique por .
Mova o número negativo para a frente da fração.
Encontre o denominador comum.
Toque para ver mais passagens...
Multiplique por .
Multiplique por .
Escreva como uma fração com denominador .
Multiplique por .
Multiplique por .
Multiplique por .
Combine os numeradores em relação ao denominador comum.
Simplifique cada termo.
Toque para ver mais passagens...
Multiplique por .
Multiplique por .
Simplifique somando e subtraindo.
Toque para ver mais passagens...
Subtraia de .
Some e .
A resposta final é .
Step 11
Esses são os extremos locais para .
é um mínimo local
Step 12
Cookies e privacidade
Este site usa cookies para garantir que você tenha a melhor experiência.
Mais informações