Álgebra Exemplos

Plotar f(x)=x^2
Step 1
Encontre as propriedades da parábola em questão.
Toque para ver mais passagens...
Reescreva a equação na forma do vértice.
Toque para ver mais passagens...
Complete o quadrado de .
Toque para ver mais passagens...
Use a forma para encontrar os valores de , e .
Considere a forma de vértice de uma parábola.
Encontre o valor de usando a fórmula .
Toque para ver mais passagens...
Substitua os valores de e na fórmula .
Cancele o fator comum de e .
Toque para ver mais passagens...
Fatore de .
Cancele os fatores comuns.
Toque para ver mais passagens...
Fatore de .
Cancele o fator comum.
Reescreva a expressão.
Divida por .
Encontre o valor de usando a fórmula .
Toque para ver mais passagens...
Substitua os valores de , e na fórmula .
Simplifique o lado direito.
Toque para ver mais passagens...
Simplifique cada termo.
Toque para ver mais passagens...
Elevar a qualquer potência positiva produz .
Multiplique por .
Divida por .
Multiplique por .
Some e .
Substitua os valores de , e na forma do vértice .
Defina como igual ao novo lado direito.
Use a forma de vértice, , para determinar os valores de , e .
Como o valor de é positivo, a parábola abre para cima.
Abre para cima
Encontre o vértice .
Encontre , a distância do vértice até o foco.
Toque para ver mais passagens...
Encontre a distância do vértice até um foco da parábola usando a seguinte fórmula.
Substitua o valor de na fórmula.
Cancele o fator comum de .
Toque para ver mais passagens...
Cancele o fator comum.
Reescreva a expressão.
Encontre o foco.
Toque para ver mais passagens...
O foco de uma parábola pode ser encontrado ao somar com a coordenada y , se a parábola abrir para cima ou para baixo.
Substitua os valores conhecidos de , e na fórmula e simplifique.
Para encontrar o eixo de simetria, encontre a reta que passa pelo vértice e o foco.
Encontre a diretriz.
Toque para ver mais passagens...
A diretriz de uma parábola é a reta horizontal encontrada ao subtrair da coordenada y do vértice se a parábola abrir para cima ou para baixo.
Substitua os valores conhecidos de e na fórmula e simplifique.
Use as propriedades da parábola para analisá-la e representá-la graficamente.
Direção: abre para cima
Vértice:
Foco:
Eixo de simetria:
Diretriz:
Direção: abre para cima
Vértice:
Foco:
Eixo de simetria:
Diretriz:
Step 2
Selecione alguns valores de e substitua-os na equação para encontrar os valores correspondentes de . Os valores de devem ser selecionados em torno do vértice.
Toque para ver mais passagens...
Substitua a variável por na expressão.
Simplifique o resultado.
Toque para ver mais passagens...
Eleve à potência de .
A resposta final é .
O valor em é .
Substitua a variável por na expressão.
Simplifique o resultado.
Toque para ver mais passagens...
Eleve à potência de .
A resposta final é .
O valor em é .
Substitua a variável por na expressão.
Simplifique o resultado.
Toque para ver mais passagens...
Um elevado a qualquer potência é um.
A resposta final é .
O valor em é .
Substitua a variável por na expressão.
Simplifique o resultado.
Toque para ver mais passagens...
Eleve à potência de .
A resposta final é .
O valor em é .
Crie um gráfico da parábola usando suas propriedades e os pontos selecionados.
Step 3
Crie um gráfico da parábola usando suas propriedades e os pontos selecionados.
Direção: abre para cima
Vértice:
Foco:
Eixo de simetria:
Diretriz:
Step 4
Cookies e privacidade
Este site usa cookies para garantir que você tenha a melhor experiência.
Mais informações