Álgebra Exemplos

Encontre o Quartil Superior ou Terceiro Quartil 3 , 6 , 7 , 8 , 10 , 12 , 15 , 18
, , , , , , ,
Step 1
Existem observações. Portanto, a mediana é a média dos dois números do meio do conjunto de dados disposto. Dividir as observações de cada lado da mediana resulta em dois grupos de observações. A mediana da metade inferior dos dados é o primeiro quartil, ou quartil inferior. A mediana da metade superior dos dados é o terceiro quartil, ou quartil superior.
A mediana da metade inferior dos dados é o primeiro quartil, ou quartil inferior
A mediana da metade superior dos dados é o terceiro quartil, ou quartil superior
Step 2
Disponha todos os termos em ordem crescente.
Step 3
Encontre a mediana de .
Toque para ver mais passagens...
A mediana é o termo do meio no conjunto de dados disposto. Se houver um número par de termos, a mediana será a média dos dois termos do meio.
Remova os parênteses.
Cancele o fator comum de e .
Toque para ver mais passagens...
Fatore de .
Fatore de .
Fatore de .
Cancele os fatores comuns.
Toque para ver mais passagens...
Fatore de .
Cancele o fator comum.
Reescreva a expressão.
Divida por .
Some e .
Converta a mediana em decimal.
Step 4
A metade superior dos dados é o conjunto acima da mediana.
Step 5
A mediana da metade superior dos dados é o terceiro quartil, ou quartil superior. Nesse caso, o terceiro quartil é .
Toque para ver mais passagens...
A mediana é o termo do meio no conjunto de dados disposto. Se houver um número par de termos, a mediana será a média dos dois termos do meio.
Remova os parênteses.
Some e .
Converta a mediana em decimal.
Cookies e privacidade
Este site usa cookies para garantir que você tenha a melhor experiência.
Mais informações