Precalculus Examples

Convert to Interval Notation 12x^3-20x^2<0
Convert the inequality to an equation.
Factor out of .
Tap for more steps...
Factor out of .
Factor out of .
Factor out of .
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Set equal to and solve for .
Tap for more steps...
Set equal to .
Solve for .
Tap for more steps...
Take the square root of both sides of the equation to eliminate the exponent on the left side.
Simplify .
Tap for more steps...
Rewrite as .
Pull terms out from under the radical, assuming positive real numbers.
Plus or minus is .
Set equal to and solve for .
Tap for more steps...
Set equal to .
Solve for .
Tap for more steps...
Add to both sides of the equation.
Divide each term in by and simplify.
Tap for more steps...
Divide each term in by .
Simplify the left side.
Tap for more steps...
Cancel the common factor of .
Tap for more steps...
Cancel the common factor.
Divide by .
The final solution is all the values that make true.
Use each root to create test intervals.
Choose a test value from each interval and plug this value into the original inequality to determine which intervals satisfy the inequality.
Tap for more steps...
Test a value on the interval to see if it makes the inequality true.
Tap for more steps...
Choose a value on the interval and see if this value makes the original inequality true.
Replace with in the original inequality.
The left side is less than the right side , which means that the given statement is always true.
True
True
Test a value on the interval to see if it makes the inequality true.
Tap for more steps...
Choose a value on the interval and see if this value makes the original inequality true.
Replace with in the original inequality.
The left side is less than the right side , which means that the given statement is always true.
True
True
Test a value on the interval to see if it makes the inequality true.
Tap for more steps...
Choose a value on the interval and see if this value makes the original inequality true.
Replace with in the original inequality.
The left side is not less than the right side , which means that the given statement is false.
False
False
Compare the intervals to determine which ones satisfy the original inequality.
True
True
False
True
True
False
The solution consists of all of the true intervals.
or
Convert the inequality to interval notation.
Cookies & Privacy
This website uses cookies to ensure you get the best experience on our website.
More Information