Enter a problem...
Calculus Examples
,
Step 1
Step 1.1
Substitute in for .
Step 1.2
Solve for .
Step 1.2.1
Remove parentheses.
Step 1.2.2
Cancel the common factor of and .
Step 1.2.2.1
Factor out of .
Step 1.2.2.2
Cancel the common factors.
Step 1.2.2.2.1
Factor out of .
Step 1.2.2.2.2
Cancel the common factor.
Step 1.2.2.2.3
Rewrite the expression.
Step 2
Step 2.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.2
Differentiate using the Quotient Rule which states that is where and .
Step 2.3
Differentiate using the Power Rule.
Step 2.3.1
Multiply the exponents in .
Step 2.3.1.1
Apply the power rule and multiply exponents, .
Step 2.3.1.2
Move to the left of .
Step 2.3.2
Differentiate using the Power Rule which states that is where .
Step 2.3.3
Multiply by .
Step 2.4
Differentiate using the Exponential Rule which states that is where =.
Step 2.5
Combine and .
Step 2.6
Simplify.
Step 2.6.1
Apply the distributive property.
Step 2.6.2
Simplify the numerator.
Step 2.6.2.1
Simplify each term.
Step 2.6.2.1.1
Multiply .
Step 2.6.2.1.1.1
Multiply by .
Step 2.6.2.1.1.2
Simplify by moving inside the logarithm.
Step 2.6.2.1.2
Rewrite using the commutative property of multiplication.
Step 2.6.2.1.3
Raise to the power of .
Step 2.6.2.2
Reorder factors in .
Step 2.6.3
Reorder terms.
Step 2.6.4
Factor out of .
Step 2.6.4.1
Factor out of .
Step 2.6.4.2
Factor out of .
Step 2.6.4.3
Factor out of .
Step 2.6.5
Cancel the common factor of and .
Step 2.6.5.1
Factor out of .
Step 2.6.5.2
Cancel the common factors.
Step 2.6.5.2.1
Multiply by .
Step 2.6.5.2.2
Cancel the common factor.
Step 2.6.5.2.3
Rewrite the expression.
Step 2.6.5.2.4
Divide by .
Step 2.6.6
Apply the distributive property.
Step 2.6.7
Rewrite using the commutative property of multiplication.
Step 2.6.8
Move to the left of .
Step 2.6.9
Reorder factors in .
Step 2.7
Evaluate the derivative at .
Step 2.8
Simplify each term.
Step 2.8.1
Multiply by .
Step 2.8.2
Rewrite the expression using the negative exponent rule .
Step 2.8.3
Raise to the power of .
Step 2.8.4
Simplify by moving inside the logarithm.
Step 2.8.5
Simplify by moving inside the logarithm.
Step 2.8.6
Multiply the exponents in .
Step 2.8.6.1
Apply the power rule and multiply exponents, .
Step 2.8.6.2
Cancel the common factor of .
Step 2.8.6.2.1
Factor out of .
Step 2.8.6.2.2
Cancel the common factor.
Step 2.8.6.2.3
Rewrite the expression.
Step 2.8.7
Multiply by .
Step 2.8.8
Rewrite the expression using the negative exponent rule .
Step 2.8.9
Raise to the power of .
Step 2.8.10
Combine and .
Step 3
Step 3.1
Use the slope and a given point to substitute for and in the point-slope form , which is derived from the slope equation .
Step 3.2
Simplify the equation and keep it in point-slope form.
Step 3.3
Solve for .
Step 3.3.1
Simplify .
Step 3.3.1.1
Rewrite.
Step 3.3.1.2
Simplify by adding zeros.
Step 3.3.1.3
Expand using the FOIL Method.
Step 3.3.1.3.1
Apply the distributive property.
Step 3.3.1.3.2
Apply the distributive property.
Step 3.3.1.3.3
Apply the distributive property.
Step 3.3.1.4
Simplify terms.
Step 3.3.1.4.1
Simplify each term.
Step 3.3.1.4.1.1
Multiply .
Step 3.3.1.4.1.1.1
Multiply by .
Step 3.3.1.4.1.1.2
Simplify by moving inside the logarithm.
Step 3.3.1.4.1.2
Multiply the exponents in .
Step 3.3.1.4.1.2.1
Apply the power rule and multiply exponents, .
Step 3.3.1.4.1.2.2
Cancel the common factor of .
Step 3.3.1.4.1.2.2.1
Cancel the common factor.
Step 3.3.1.4.1.2.2.2
Rewrite the expression.
Step 3.3.1.4.1.3
Evaluate the exponent.
Step 3.3.1.4.1.4
Combine and .
Step 3.3.1.4.1.5
Cancel the common factor of .
Step 3.3.1.4.1.5.1
Factor out of .
Step 3.3.1.4.1.5.2
Factor out of .
Step 3.3.1.4.1.5.3
Cancel the common factor.
Step 3.3.1.4.1.5.4
Rewrite the expression.
Step 3.3.1.4.1.6
Combine and .
Step 3.3.1.4.1.7
Multiply by .
Step 3.3.1.4.1.8
Move the negative in front of the fraction.
Step 3.3.1.4.2
Reorder factors in .
Step 3.3.2
Multiply each term in by to eliminate the fractions.
Step 3.3.2.1
Multiply each term in by .
Step 3.3.2.2
Simplify the left side.
Step 3.3.2.2.1
Simplify each term.
Step 3.3.2.2.1.1
Move to the left of .
Step 3.3.2.2.1.2
Cancel the common factor of .
Step 3.3.2.2.1.2.1
Move the leading negative in into the numerator.
Step 3.3.2.2.1.2.2
Factor out of .
Step 3.3.2.2.1.2.3
Cancel the common factor.
Step 3.3.2.2.1.2.4
Rewrite the expression.
Step 3.3.2.2.1.3
Multiply by .
Step 3.3.2.3
Simplify the right side.
Step 3.3.2.3.1
Simplify each term.
Step 3.3.2.3.1.1
Multiply by .
Step 3.3.2.3.1.2
Move to the left of .
Step 3.3.2.3.1.3
Cancel the common factor of .
Step 3.3.2.3.1.3.1
Cancel the common factor.
Step 3.3.2.3.1.3.2
Rewrite the expression.
Step 3.3.2.3.1.4
Cancel the common factor of .
Step 3.3.2.3.1.4.1
Move the leading negative in into the numerator.
Step 3.3.2.3.1.4.2
Factor out of .
Step 3.3.2.3.1.4.3
Cancel the common factor.
Step 3.3.2.3.1.4.4
Rewrite the expression.
Step 3.3.2.3.1.5
Multiply by .
Step 3.3.3
Simplify the right side.
Step 3.3.3.1
Simplify .
Step 3.3.3.1.1
Simplify each term.
Step 3.3.3.1.1.1
Simplify by moving inside the logarithm.
Step 3.3.3.1.1.2
Multiply the exponents in .
Step 3.3.3.1.1.2.1
Apply the power rule and multiply exponents, .
Step 3.3.3.1.1.2.2
Cancel the common factor of .
Step 3.3.3.1.1.2.2.1
Factor out of .
Step 3.3.3.1.1.2.2.2
Cancel the common factor.
Step 3.3.3.1.1.2.2.3
Rewrite the expression.
Step 3.3.3.1.1.3
Raise to the power of .
Step 3.3.3.1.1.4
Simplify by moving inside the logarithm.
Step 3.3.3.1.1.5
Raise to the power of .
Step 3.3.3.1.2
Reorder factors in .
Step 3.3.4
Move all the terms containing a logarithm to the left side of the equation.
Step 3.3.5
Combine the opposite terms in .
Step 3.3.5.1
Subtract from .
Step 3.3.5.2
Add and .
Step 3.3.6
Rewrite the equation as .
Step 3.3.7
Subtract from both sides of the equation.
Step 3.3.8
Divide each term in by and simplify.
Step 3.3.8.1
Divide each term in by .
Step 3.3.8.2
Simplify the left side.
Step 3.3.8.2.1
Cancel the common factor of .
Step 3.3.8.2.1.1
Cancel the common factor.
Step 3.3.8.2.1.2
Divide by .
Step 3.3.8.3
Simplify the right side.
Step 3.3.8.3.1
Simplify each term.
Step 3.3.8.3.1.1
Move the negative in front of the fraction.
Step 3.3.8.3.1.2
Dividing two negative values results in a positive value.
Step 3.3.8.3.1.3
Dividing two negative values results in a positive value.
Step 3.3.9
Write in form.
Step 3.3.9.1
Simplify .
Step 3.3.9.1.1
Simplify each term.
Step 3.3.9.1.1.1
Rewrite as .
Step 3.3.9.1.1.2
Expand by moving outside the logarithm.
Step 3.3.9.1.1.3
Cancel the common factor of and .
Step 3.3.9.1.1.3.1
Factor out of .
Step 3.3.9.1.1.3.2
Cancel the common factors.
Step 3.3.9.1.1.3.2.1
Factor out of .
Step 3.3.9.1.1.3.2.2
Cancel the common factor.
Step 3.3.9.1.1.3.2.3
Rewrite the expression.
Step 3.3.9.1.1.3.2.4
Divide by .
Step 3.3.9.1.1.4
Simplify by moving inside the logarithm.
Step 3.3.9.1.1.5
Raise to the power of .
Step 3.3.9.1.2
Move .
Step 3.3.9.2
Combine the numerators over the common denominator.
Step 3.3.9.3
Simplify the numerator.
Step 3.3.9.3.1
Factor out of .
Step 3.3.9.3.1.1
Factor out of .
Step 3.3.9.3.1.2
Factor out of .
Step 3.3.9.3.1.3
Factor out of .
Step 3.3.9.3.2
Rewrite as .
Step 3.3.9.4
Factor out of .
Step 3.3.9.5
Rewrite as .
Step 3.3.9.6
Factor out of .
Step 3.3.9.7
Rewrite as .
Step 3.3.9.8
Move the negative in front of the fraction.
Step 3.3.9.9
Reorder terms.
Step 3.3.9.10
Remove parentheses.
Step 4