Enter a problem...
Calculus Examples
;
Step 1
Step 1.1
Find the first derivative.
Step 1.1.1
Find the first derivative.
Step 1.1.1.1
By the Sum Rule, the derivative of with respect to is .
Step 1.1.1.2
Evaluate .
Step 1.1.1.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.1.2.2
Differentiate using the Power Rule which states that is where .
Step 1.1.1.2.3
Combine and .
Step 1.1.1.2.4
Combine and .
Step 1.1.1.2.5
Cancel the common factor of .
Step 1.1.1.2.5.1
Cancel the common factor.
Step 1.1.1.2.5.2
Divide by .
Step 1.1.1.3
Evaluate .
Step 1.1.1.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.1.3.2
Differentiate using the Power Rule which states that is where .
Step 1.1.1.3.3
Multiply by .
Step 1.1.1.4
Evaluate .
Step 1.1.1.4.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.1.4.2
Differentiate using the Power Rule which states that is where .
Step 1.1.1.4.3
Multiply by .
Step 1.1.2
The first derivative of with respect to is .
Step 1.2
Set the first derivative equal to then solve the equation .
Step 1.2.1
Set the first derivative equal to .
Step 1.2.2
Use the quadratic formula to find the solutions.
Step 1.2.3
Substitute the values , , and into the quadratic formula and solve for .
Step 1.2.4
Simplify.
Step 1.2.4.1
Simplify the numerator.
Step 1.2.4.1.1
Raise to the power of .
Step 1.2.4.1.2
Multiply .
Step 1.2.4.1.2.1
Multiply by .
Step 1.2.4.1.2.2
Multiply by .
Step 1.2.4.1.3
Subtract from .
Step 1.2.4.1.4
Rewrite as .
Step 1.2.4.1.4.1
Factor out of .
Step 1.2.4.1.4.2
Rewrite as .
Step 1.2.4.1.5
Pull terms out from under the radical.
Step 1.2.4.2
Multiply by .
Step 1.2.4.3
Simplify .
Step 1.2.5
Simplify the expression to solve for the portion of the .
Step 1.2.5.1
Simplify the numerator.
Step 1.2.5.1.1
Raise to the power of .
Step 1.2.5.1.2
Multiply .
Step 1.2.5.1.2.1
Multiply by .
Step 1.2.5.1.2.2
Multiply by .
Step 1.2.5.1.3
Subtract from .
Step 1.2.5.1.4
Rewrite as .
Step 1.2.5.1.4.1
Factor out of .
Step 1.2.5.1.4.2
Rewrite as .
Step 1.2.5.1.5
Pull terms out from under the radical.
Step 1.2.5.2
Multiply by .
Step 1.2.5.3
Simplify .
Step 1.2.5.4
Change the to .
Step 1.2.6
Simplify the expression to solve for the portion of the .
Step 1.2.6.1
Simplify the numerator.
Step 1.2.6.1.1
Raise to the power of .
Step 1.2.6.1.2
Multiply .
Step 1.2.6.1.2.1
Multiply by .
Step 1.2.6.1.2.2
Multiply by .
Step 1.2.6.1.3
Subtract from .
Step 1.2.6.1.4
Rewrite as .
Step 1.2.6.1.4.1
Factor out of .
Step 1.2.6.1.4.2
Rewrite as .
Step 1.2.6.1.5
Pull terms out from under the radical.
Step 1.2.6.2
Multiply by .
Step 1.2.6.3
Simplify .
Step 1.2.6.4
Change the to .
Step 1.2.7
The final answer is the combination of both solutions.
Step 1.3
Find the values where the derivative is undefined.
Step 1.3.1
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Step 1.4
Evaluate at each value where the derivative is or undefined.
Step 1.4.1
Evaluate at .
Step 1.4.1.1
Substitute for .
Step 1.4.1.2
Simplify.
Step 1.4.1.2.1
Simplify each term.
Step 1.4.1.2.1.1
Use the Binomial Theorem.
Step 1.4.1.2.1.2
Simplify each term.
Step 1.4.1.2.1.2.1
Raise to the power of .
Step 1.4.1.2.1.2.2
Raise to the power of .
Step 1.4.1.2.1.2.3
Multiply by .
Step 1.4.1.2.1.2.4
Multiply by .
Step 1.4.1.2.1.2.5
Rewrite as .
Step 1.4.1.2.1.2.5.1
Use to rewrite as .
Step 1.4.1.2.1.2.5.2
Apply the power rule and multiply exponents, .
Step 1.4.1.2.1.2.5.3
Combine and .
Step 1.4.1.2.1.2.5.4
Cancel the common factor of .
Step 1.4.1.2.1.2.5.4.1
Cancel the common factor.
Step 1.4.1.2.1.2.5.4.2
Rewrite the expression.
Step 1.4.1.2.1.2.5.5
Evaluate the exponent.
Step 1.4.1.2.1.2.6
Multiply by .
Step 1.4.1.2.1.2.7
Rewrite as .
Step 1.4.1.2.1.2.8
Raise to the power of .
Step 1.4.1.2.1.2.9
Rewrite as .
Step 1.4.1.2.1.2.9.1
Factor out of .
Step 1.4.1.2.1.2.9.2
Rewrite as .
Step 1.4.1.2.1.2.10
Pull terms out from under the radical.
Step 1.4.1.2.1.3
Add and .
Step 1.4.1.2.1.4
Add and .
Step 1.4.1.2.1.5
Apply the distributive property.
Step 1.4.1.2.1.6
Combine and .
Step 1.4.1.2.1.7
Cancel the common factor of .
Step 1.4.1.2.1.7.1
Factor out of .
Step 1.4.1.2.1.7.2
Cancel the common factor.
Step 1.4.1.2.1.7.3
Rewrite the expression.
Step 1.4.1.2.1.8
Rewrite as .
Step 1.4.1.2.1.9
Expand using the FOIL Method.
Step 1.4.1.2.1.9.1
Apply the distributive property.
Step 1.4.1.2.1.9.2
Apply the distributive property.
Step 1.4.1.2.1.9.3
Apply the distributive property.
Step 1.4.1.2.1.10
Simplify and combine like terms.
Step 1.4.1.2.1.10.1
Simplify each term.
Step 1.4.1.2.1.10.1.1
Multiply by .
Step 1.4.1.2.1.10.1.2
Move to the left of .
Step 1.4.1.2.1.10.1.3
Combine using the product rule for radicals.
Step 1.4.1.2.1.10.1.4
Multiply by .
Step 1.4.1.2.1.10.1.5
Rewrite as .
Step 1.4.1.2.1.10.1.6
Pull terms out from under the radical, assuming positive real numbers.
Step 1.4.1.2.1.10.2
Add and .
Step 1.4.1.2.1.10.3
Add and .
Step 1.4.1.2.1.11
Apply the distributive property.
Step 1.4.1.2.1.12
Multiply by .
Step 1.4.1.2.1.13
Multiply by .
Step 1.4.1.2.1.14
Apply the distributive property.
Step 1.4.1.2.1.15
Multiply by .
Step 1.4.1.2.2
To write as a fraction with a common denominator, multiply by .
Step 1.4.1.2.3
Combine and .
Step 1.4.1.2.4
Combine the numerators over the common denominator.
Step 1.4.1.2.5
Simplify the numerator.
Step 1.4.1.2.5.1
Multiply by .
Step 1.4.1.2.5.2
Subtract from .
Step 1.4.1.2.6
Move the negative in front of the fraction.
Step 1.4.1.2.7
To write as a fraction with a common denominator, multiply by .
Step 1.4.1.2.8
Combine and .
Step 1.4.1.2.9
Combine the numerators over the common denominator.
Step 1.4.1.2.10
Simplify the numerator.
Step 1.4.1.2.10.1
Multiply by .
Step 1.4.1.2.10.2
Add and .
Step 1.4.1.2.11
Subtract from .
Step 1.4.1.2.12
Add and .
Step 1.4.2
Evaluate at .
Step 1.4.2.1
Substitute for .
Step 1.4.2.2
Simplify.
Step 1.4.2.2.1
Simplify each term.
Step 1.4.2.2.1.1
Use the Binomial Theorem.
Step 1.4.2.2.1.2
Simplify each term.
Step 1.4.2.2.1.2.1
Raise to the power of .
Step 1.4.2.2.1.2.2
Raise to the power of .
Step 1.4.2.2.1.2.3
Multiply by .
Step 1.4.2.2.1.2.4
Multiply by .
Step 1.4.2.2.1.2.5
Multiply by .
Step 1.4.2.2.1.2.6
Apply the product rule to .
Step 1.4.2.2.1.2.7
Raise to the power of .
Step 1.4.2.2.1.2.8
Multiply by .
Step 1.4.2.2.1.2.9
Rewrite as .
Step 1.4.2.2.1.2.9.1
Use to rewrite as .
Step 1.4.2.2.1.2.9.2
Apply the power rule and multiply exponents, .
Step 1.4.2.2.1.2.9.3
Combine and .
Step 1.4.2.2.1.2.9.4
Cancel the common factor of .
Step 1.4.2.2.1.2.9.4.1
Cancel the common factor.
Step 1.4.2.2.1.2.9.4.2
Rewrite the expression.
Step 1.4.2.2.1.2.9.5
Evaluate the exponent.
Step 1.4.2.2.1.2.10
Multiply by .
Step 1.4.2.2.1.2.11
Apply the product rule to .
Step 1.4.2.2.1.2.12
Raise to the power of .
Step 1.4.2.2.1.2.13
Rewrite as .
Step 1.4.2.2.1.2.14
Raise to the power of .
Step 1.4.2.2.1.2.15
Rewrite as .
Step 1.4.2.2.1.2.15.1
Factor out of .
Step 1.4.2.2.1.2.15.2
Rewrite as .
Step 1.4.2.2.1.2.16
Pull terms out from under the radical.
Step 1.4.2.2.1.2.17
Multiply by .
Step 1.4.2.2.1.3
Add and .
Step 1.4.2.2.1.4
Subtract from .
Step 1.4.2.2.1.5
Apply the distributive property.
Step 1.4.2.2.1.6
Combine and .
Step 1.4.2.2.1.7
Cancel the common factor of .
Step 1.4.2.2.1.7.1
Factor out of .
Step 1.4.2.2.1.7.2
Cancel the common factor.
Step 1.4.2.2.1.7.3
Rewrite the expression.
Step 1.4.2.2.1.8
Rewrite as .
Step 1.4.2.2.1.9
Expand using the FOIL Method.
Step 1.4.2.2.1.9.1
Apply the distributive property.
Step 1.4.2.2.1.9.2
Apply the distributive property.
Step 1.4.2.2.1.9.3
Apply the distributive property.
Step 1.4.2.2.1.10
Simplify and combine like terms.
Step 1.4.2.2.1.10.1
Simplify each term.
Step 1.4.2.2.1.10.1.1
Multiply by .
Step 1.4.2.2.1.10.1.2
Multiply by .
Step 1.4.2.2.1.10.1.3
Multiply by .
Step 1.4.2.2.1.10.1.4
Multiply .
Step 1.4.2.2.1.10.1.4.1
Multiply by .
Step 1.4.2.2.1.10.1.4.2
Multiply by .
Step 1.4.2.2.1.10.1.4.3
Raise to the power of .
Step 1.4.2.2.1.10.1.4.4
Raise to the power of .
Step 1.4.2.2.1.10.1.4.5
Use the power rule to combine exponents.
Step 1.4.2.2.1.10.1.4.6
Add and .
Step 1.4.2.2.1.10.1.5
Rewrite as .
Step 1.4.2.2.1.10.1.5.1
Use to rewrite as .
Step 1.4.2.2.1.10.1.5.2
Apply the power rule and multiply exponents, .
Step 1.4.2.2.1.10.1.5.3
Combine and .
Step 1.4.2.2.1.10.1.5.4
Cancel the common factor of .
Step 1.4.2.2.1.10.1.5.4.1
Cancel the common factor.
Step 1.4.2.2.1.10.1.5.4.2
Rewrite the expression.
Step 1.4.2.2.1.10.1.5.5
Evaluate the exponent.
Step 1.4.2.2.1.10.2
Add and .
Step 1.4.2.2.1.10.3
Subtract from .
Step 1.4.2.2.1.11
Apply the distributive property.
Step 1.4.2.2.1.12
Multiply by .
Step 1.4.2.2.1.13
Multiply by .
Step 1.4.2.2.1.14
Apply the distributive property.
Step 1.4.2.2.1.15
Multiply by .
Step 1.4.2.2.1.16
Multiply by .
Step 1.4.2.2.2
To write as a fraction with a common denominator, multiply by .
Step 1.4.2.2.3
Combine and .
Step 1.4.2.2.4
Combine the numerators over the common denominator.
Step 1.4.2.2.5
Simplify the numerator.
Step 1.4.2.2.5.1
Multiply by .
Step 1.4.2.2.5.2
Subtract from .
Step 1.4.2.2.6
Move the negative in front of the fraction.
Step 1.4.2.2.7
To write as a fraction with a common denominator, multiply by .
Step 1.4.2.2.8
Combine and .
Step 1.4.2.2.9
Combine the numerators over the common denominator.
Step 1.4.2.2.10
Simplify the numerator.
Step 1.4.2.2.10.1
Multiply by .
Step 1.4.2.2.10.2
Add and .
Step 1.4.2.2.11
Add and .
Step 1.4.2.2.12
Subtract from .
Step 1.4.3
List all of the points.
Step 2
Step 2.1
Evaluate at .
Step 2.1.1
Substitute for .
Step 2.1.2
Simplify.
Step 2.1.2.1
Simplify each term.
Step 2.1.2.1.1
One to any power is one.
Step 2.1.2.1.2
Multiply by .
Step 2.1.2.1.3
One to any power is one.
Step 2.1.2.1.4
Multiply by .
Step 2.1.2.1.5
Multiply by .
Step 2.1.2.2
Find the common denominator.
Step 2.1.2.2.1
Write as a fraction with denominator .
Step 2.1.2.2.2
Multiply by .
Step 2.1.2.2.3
Multiply by .
Step 2.1.2.2.4
Write as a fraction with denominator .
Step 2.1.2.2.5
Multiply by .
Step 2.1.2.2.6
Multiply by .
Step 2.1.2.3
Combine the numerators over the common denominator.
Step 2.1.2.4
Simplify each term.
Step 2.1.2.4.1
Multiply by .
Step 2.1.2.4.2
Multiply by .
Step 2.1.2.5
Simplify by adding and subtracting.
Step 2.1.2.5.1
Subtract from .
Step 2.1.2.5.2
Add and .
Step 2.2
Evaluate at .
Step 2.2.1
Substitute for .
Step 2.2.2
Simplify.
Step 2.2.2.1
Simplify each term.
Step 2.2.2.1.1
Raise to the power of .
Step 2.2.2.1.2
Cancel the common factor of .
Step 2.2.2.1.2.1
Factor out of .
Step 2.2.2.1.2.2
Cancel the common factor.
Step 2.2.2.1.2.3
Rewrite the expression.
Step 2.2.2.1.3
Raise to the power of .
Step 2.2.2.1.4
Multiply by .
Step 2.2.2.1.5
Multiply by .
Step 2.2.2.2
Simplify by adding and subtracting.
Step 2.2.2.2.1
Subtract from .
Step 2.2.2.2.2
Add and .
Step 2.3
List all of the points.
Step 3
Compare the values found for each value of in order to determine the absolute maximum and minimum over the given interval. The maximum will occur at the highest value and the minimum will occur at the lowest value.
Absolute Maximum:
Absolute Minimum:
Step 4