Calculus Examples

Find the Critical Points 16x^4+125x
Step 1
Find the first derivative.
Tap for more steps...
Step 1.1
Find the first derivative.
Tap for more steps...
Step 1.1.1
By the Sum Rule, the derivative of with respect to is .
Step 1.1.2
Evaluate .
Tap for more steps...
Step 1.1.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.2.2
Differentiate using the Power Rule which states that is where .
Step 1.1.2.3
Multiply by .
Step 1.1.3
Evaluate .
Tap for more steps...
Step 1.1.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.3.2
Differentiate using the Power Rule which states that is where .
Step 1.1.3.3
Multiply by .
Step 1.2
The first derivative of with respect to is .
Step 2
Set the first derivative equal to then solve the equation .
Tap for more steps...
Step 2.1
Set the first derivative equal to .
Step 2.2
Subtract from both sides of the equation.
Step 2.3
Add to both sides of the equation.
Step 2.4
Factor the left side of the equation.
Tap for more steps...
Step 2.4.1
Rewrite as .
Step 2.4.2
Rewrite as .
Step 2.4.3
Since both terms are perfect cubes, factor using the sum of cubes formula, where and .
Step 2.4.4
Simplify.
Tap for more steps...
Step 2.4.4.1
Apply the product rule to .
Step 2.4.4.2
Raise to the power of .
Step 2.4.4.3
Multiply by .
Step 2.4.4.4
Multiply by .
Step 2.4.4.5
Raise to the power of .
Step 2.5
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 2.6
Set equal to and solve for .
Tap for more steps...
Step 2.6.1
Set equal to .
Step 2.6.2
Solve for .
Tap for more steps...
Step 2.6.2.1
Subtract from both sides of the equation.
Step 2.6.2.2
Divide each term in by and simplify.
Tap for more steps...
Step 2.6.2.2.1
Divide each term in by .
Step 2.6.2.2.2
Simplify the left side.
Tap for more steps...
Step 2.6.2.2.2.1
Cancel the common factor of .
Tap for more steps...
Step 2.6.2.2.2.1.1
Cancel the common factor.
Step 2.6.2.2.2.1.2
Divide by .
Step 2.6.2.2.3
Simplify the right side.
Tap for more steps...
Step 2.6.2.2.3.1
Move the negative in front of the fraction.
Step 2.7
Set equal to and solve for .
Tap for more steps...
Step 2.7.1
Set equal to .
Step 2.7.2
Solve for .
Tap for more steps...
Step 2.7.2.1
Use the quadratic formula to find the solutions.
Step 2.7.2.2
Substitute the values , , and into the quadratic formula and solve for .
Step 2.7.2.3
Simplify.
Tap for more steps...
Step 2.7.2.3.1
Simplify the numerator.
Tap for more steps...
Step 2.7.2.3.1.1
Raise to the power of .
Step 2.7.2.3.1.2
Multiply .
Tap for more steps...
Step 2.7.2.3.1.2.1
Multiply by .
Step 2.7.2.3.1.2.2
Multiply by .
Step 2.7.2.3.1.3
Subtract from .
Step 2.7.2.3.1.4
Rewrite as .
Step 2.7.2.3.1.5
Rewrite as .
Step 2.7.2.3.1.6
Rewrite as .
Step 2.7.2.3.1.7
Rewrite as .
Tap for more steps...
Step 2.7.2.3.1.7.1
Factor out of .
Step 2.7.2.3.1.7.2
Rewrite as .
Step 2.7.2.3.1.8
Pull terms out from under the radical.
Step 2.7.2.3.1.9
Move to the left of .
Step 2.7.2.3.2
Multiply by .
Step 2.7.2.3.3
Simplify .
Step 2.7.2.4
Simplify the expression to solve for the portion of the .
Tap for more steps...
Step 2.7.2.4.1
Simplify the numerator.
Tap for more steps...
Step 2.7.2.4.1.1
Raise to the power of .
Step 2.7.2.4.1.2
Multiply .
Tap for more steps...
Step 2.7.2.4.1.2.1
Multiply by .
Step 2.7.2.4.1.2.2
Multiply by .
Step 2.7.2.4.1.3
Subtract from .
Step 2.7.2.4.1.4
Rewrite as .
Step 2.7.2.4.1.5
Rewrite as .
Step 2.7.2.4.1.6
Rewrite as .
Step 2.7.2.4.1.7
Rewrite as .
Tap for more steps...
Step 2.7.2.4.1.7.1
Factor out of .
Step 2.7.2.4.1.7.2
Rewrite as .
Step 2.7.2.4.1.8
Pull terms out from under the radical.
Step 2.7.2.4.1.9
Move to the left of .
Step 2.7.2.4.2
Multiply by .
Step 2.7.2.4.3
Simplify .
Step 2.7.2.4.4
Change the to .
Step 2.7.2.5
Simplify the expression to solve for the portion of the .
Tap for more steps...
Step 2.7.2.5.1
Simplify the numerator.
Tap for more steps...
Step 2.7.2.5.1.1
Raise to the power of .
Step 2.7.2.5.1.2
Multiply .
Tap for more steps...
Step 2.7.2.5.1.2.1
Multiply by .
Step 2.7.2.5.1.2.2
Multiply by .
Step 2.7.2.5.1.3
Subtract from .
Step 2.7.2.5.1.4
Rewrite as .
Step 2.7.2.5.1.5
Rewrite as .
Step 2.7.2.5.1.6
Rewrite as .
Step 2.7.2.5.1.7
Rewrite as .
Tap for more steps...
Step 2.7.2.5.1.7.1
Factor out of .
Step 2.7.2.5.1.7.2
Rewrite as .
Step 2.7.2.5.1.8
Pull terms out from under the radical.
Step 2.7.2.5.1.9
Move to the left of .
Step 2.7.2.5.2
Multiply by .
Step 2.7.2.5.3
Simplify .
Step 2.7.2.5.4
Change the to .
Step 2.7.2.6
The final answer is the combination of both solutions.
Step 2.8
The final solution is all the values that make true.
Step 3
Find the values where the derivative is undefined.
Tap for more steps...
Step 3.1
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Step 4
Evaluate at each value where the derivative is or undefined.
Tap for more steps...
Step 4.1
Evaluate at .
Tap for more steps...
Step 4.1.1
Substitute for .
Step 4.1.2
Simplify.
Tap for more steps...
Step 4.1.2.1
Simplify each term.
Tap for more steps...
Step 4.1.2.1.1
Use the power rule to distribute the exponent.
Tap for more steps...
Step 4.1.2.1.1.1
Apply the product rule to .
Step 4.1.2.1.1.2
Apply the product rule to .
Step 4.1.2.1.2
Raise to the power of .
Step 4.1.2.1.3
Multiply by .
Step 4.1.2.1.4
Raise to the power of .
Step 4.1.2.1.5
Raise to the power of .
Step 4.1.2.1.6
Cancel the common factor of .
Tap for more steps...
Step 4.1.2.1.6.1
Factor out of .
Step 4.1.2.1.6.2
Cancel the common factor.
Step 4.1.2.1.6.3
Rewrite the expression.
Step 4.1.2.1.7
Multiply .
Tap for more steps...
Step 4.1.2.1.7.1
Multiply by .
Step 4.1.2.1.7.2
Combine and .
Step 4.1.2.1.7.3
Multiply by .
Step 4.1.2.1.8
Move the negative in front of the fraction.
Step 4.1.2.2
To write as a fraction with a common denominator, multiply by .
Step 4.1.2.3
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Tap for more steps...
Step 4.1.2.3.1
Multiply by .
Step 4.1.2.3.2
Multiply by .
Step 4.1.2.4
Combine the numerators over the common denominator.
Step 4.1.2.5
Simplify the numerator.
Tap for more steps...
Step 4.1.2.5.1
Multiply by .
Step 4.1.2.5.2
Subtract from .
Step 4.1.2.6
Move the negative in front of the fraction.
Step 4.2
List all of the points.
Step 5