Enter a problem...
Calculus Examples
Step 1
Write as a function.
Step 2
Step 2.1
Find the first derivative.
Step 2.1.1
Differentiate using the chain rule, which states that is where and .
Step 2.1.1.1
To apply the Chain Rule, set as .
Step 2.1.1.2
The derivative of with respect to is .
Step 2.1.1.3
Replace all occurrences of with .
Step 2.1.2
Differentiate.
Step 2.1.2.1
By the Sum Rule, the derivative of with respect to is .
Step 2.1.2.2
Differentiate using the Power Rule which states that is where .
Step 2.1.2.3
Since is constant with respect to , the derivative of with respect to is .
Step 2.1.2.4
Combine fractions.
Step 2.1.2.4.1
Add and .
Step 2.1.2.4.2
Combine and .
Step 2.1.2.4.3
Combine and .
Step 2.2
The first derivative of with respect to is .
Step 3
Step 3.1
Set the first derivative equal to .
Step 3.2
Set the numerator equal to zero.
Step 3.3
Solve the equation for .
Step 3.3.1
Divide each term in by and simplify.
Step 3.3.1.1
Divide each term in by .
Step 3.3.1.2
Simplify the left side.
Step 3.3.1.2.1
Cancel the common factor of .
Step 3.3.1.2.1.1
Cancel the common factor.
Step 3.3.1.2.1.2
Divide by .
Step 3.3.1.3
Simplify the right side.
Step 3.3.1.3.1
Divide by .
Step 3.3.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 3.3.3
Simplify .
Step 3.3.3.1
Rewrite as .
Step 3.3.3.2
Pull terms out from under the radical, assuming real numbers.
Step 4
The values which make the derivative equal to are .
Step 5
After finding the point that makes the derivative equal to or undefined, the interval to check where is increasing and where it is decreasing is .
Step 6
Step 6.1
Replace the variable with in the expression.
Step 6.2
Simplify the result.
Step 6.2.1
Raise to the power of .
Step 6.2.2
Simplify the denominator.
Step 6.2.2.1
Raise to the power of .
Step 6.2.2.2
Add and .
Step 6.2.3
Simplify the expression.
Step 6.2.3.1
Multiply by .
Step 6.2.3.2
Divide by .
Step 6.2.4
The final answer is .
Step 6.3
At the derivative is . Since this is negative, the function is decreasing on .
Decreasing on since
Decreasing on since
Step 7
Step 7.1
Replace the variable with in the expression.
Step 7.2
Simplify the result.
Step 7.2.1
One to any power is one.
Step 7.2.2
Simplify the denominator.
Step 7.2.2.1
One to any power is one.
Step 7.2.2.2
Add and .
Step 7.2.3
Simplify the expression.
Step 7.2.3.1
Multiply by .
Step 7.2.3.2
Divide by .
Step 7.2.4
The final answer is .
Step 7.3
At the derivative is . Since this is positive, the function is increasing on .
Increasing on since
Increasing on since
Step 8
List the intervals on which the function is increasing and decreasing.
Increasing on:
Decreasing on:
Step 9