Enter a problem...
Calculus Examples
Step 1
Interchange the variables.
Step 2
Step 2.1
Rewrite the equation as .
Step 2.2
Raise each side of the equation to the power of to eliminate the fractional exponent on the left side.
Step 2.3
Simplify the exponent.
Step 2.3.1
Simplify the left side.
Step 2.3.1.1
Simplify .
Step 2.3.1.1.1
Multiply the exponents in .
Step 2.3.1.1.1.1
Apply the power rule and multiply exponents, .
Step 2.3.1.1.1.2
Cancel the common factor of .
Step 2.3.1.1.1.2.1
Move the leading negative in into the numerator.
Step 2.3.1.1.1.2.2
Factor out of .
Step 2.3.1.1.1.2.3
Cancel the common factor.
Step 2.3.1.1.1.2.4
Rewrite the expression.
Step 2.3.1.1.1.3
Multiply by .
Step 2.3.1.1.2
Simplify.
Step 2.3.2
Simplify the right side.
Step 2.3.2.1
Rewrite the expression using the negative exponent rule .
Step 3
Replace with to show the final answer.
Step 4
Step 4.1
To verify the inverse, check if and .
Step 4.2
Evaluate .
Step 4.2.1
Set up the composite result function.
Step 4.2.2
Evaluate by substituting in the value of into .
Step 4.2.3
Simplify the denominator.
Step 4.2.3.1
Multiply the exponents in .
Step 4.2.3.1.1
Apply the power rule and multiply exponents, .
Step 4.2.3.1.2
Cancel the common factor of .
Step 4.2.3.1.2.1
Move the leading negative in into the numerator.
Step 4.2.3.1.2.2
Cancel the common factor.
Step 4.2.3.1.2.3
Rewrite the expression.
Step 4.2.3.2
Rewrite the expression using the negative exponent rule .
Step 4.2.4
Multiply the numerator by the reciprocal of the denominator.
Step 4.2.5
Multiply by .
Step 4.3
Evaluate .
Step 4.3.1
Set up the composite result function.
Step 4.3.2
Evaluate by substituting in the value of into .
Step 4.3.3
Change the sign of the exponent by rewriting the base as its reciprocal.
Step 4.3.4
Multiply the exponents in .
Step 4.3.4.1
Apply the power rule and multiply exponents, .
Step 4.3.4.2
Cancel the common factor of .
Step 4.3.4.2.1
Cancel the common factor.
Step 4.3.4.2.2
Rewrite the expression.
Step 4.4
Since and , then is the inverse of .