Enter a problem...
Calculus Examples
Step 1
Step 1.1
Find the first derivative.
Step 1.1.1
Differentiate using the Quotient Rule which states that is where and .
Step 1.1.2
Differentiate.
Step 1.1.2.1
Differentiate using the Power Rule which states that is where .
Step 1.1.2.2
Move to the left of .
Step 1.1.2.3
By the Sum Rule, the derivative of with respect to is .
Step 1.1.2.4
Differentiate using the Power Rule which states that is where .
Step 1.1.2.5
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.2.6
Simplify the expression.
Step 1.1.2.6.1
Add and .
Step 1.1.2.6.2
Multiply by .
Step 1.1.3
Raise to the power of .
Step 1.1.4
Use the power rule to combine exponents.
Step 1.1.5
Add and .
Step 1.1.6
Simplify.
Step 1.1.6.1
Apply the distributive property.
Step 1.1.6.2
Apply the distributive property.
Step 1.1.6.3
Simplify the numerator.
Step 1.1.6.3.1
Simplify each term.
Step 1.1.6.3.1.1
Multiply by by adding the exponents.
Step 1.1.6.3.1.1.1
Move .
Step 1.1.6.3.1.1.2
Use the power rule to combine exponents.
Step 1.1.6.3.1.1.3
Add and .
Step 1.1.6.3.1.2
Multiply by .
Step 1.1.6.3.2
Subtract from .
Step 1.1.6.4
Factor out of .
Step 1.1.6.4.1
Factor out of .
Step 1.1.6.4.2
Factor out of .
Step 1.1.6.4.3
Factor out of .
Step 1.1.6.5
Simplify the denominator.
Step 1.1.6.5.1
Rewrite as .
Step 1.1.6.5.2
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 1.1.6.5.3
Apply the product rule to .
Step 1.2
The first derivative of with respect to is .
Step 2
Step 2.1
Set the first derivative equal to .
Step 2.2
Set the numerator equal to zero.
Step 2.3
Solve the equation for .
Step 2.3.1
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 2.3.2
Set equal to and solve for .
Step 2.3.2.1
Set equal to .
Step 2.3.2.2
Solve for .
Step 2.3.2.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 2.3.2.2.2
Simplify .
Step 2.3.2.2.2.1
Rewrite as .
Step 2.3.2.2.2.2
Pull terms out from under the radical, assuming positive real numbers.
Step 2.3.2.2.2.3
Plus or minus is .
Step 2.3.3
Set equal to and solve for .
Step 2.3.3.1
Set equal to .
Step 2.3.3.2
Solve for .
Step 2.3.3.2.1
Add to both sides of the equation.
Step 2.3.3.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 2.3.3.2.3
Simplify .
Step 2.3.3.2.3.1
Rewrite as .
Step 2.3.3.2.3.1.1
Factor out of .
Step 2.3.3.2.3.1.2
Rewrite as .
Step 2.3.3.2.3.2
Pull terms out from under the radical.
Step 2.3.3.2.4
The complete solution is the result of both the positive and negative portions of the solution.
Step 2.3.3.2.4.1
First, use the positive value of the to find the first solution.
Step 2.3.3.2.4.2
Next, use the negative value of the to find the second solution.
Step 2.3.3.2.4.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 2.3.4
The final solution is all the values that make true.
Step 3
The values which make the derivative equal to are .
Step 4
Step 4.1
Set the denominator in equal to to find where the expression is undefined.
Step 4.2
Solve for .
Step 4.2.1
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 4.2.2
Set equal to and solve for .
Step 4.2.2.1
Set equal to .
Step 4.2.2.2
Solve for .
Step 4.2.2.2.1
Set the equal to .
Step 4.2.2.2.2
Subtract from both sides of the equation.
Step 4.2.3
Set equal to and solve for .
Step 4.2.3.1
Set equal to .
Step 4.2.3.2
Solve for .
Step 4.2.3.2.1
Set the equal to .
Step 4.2.3.2.2
Add to both sides of the equation.
Step 4.2.4
The final solution is all the values that make true.
Step 4.3
The equation is undefined where the denominator equals , the argument of a square root is less than , or the argument of a logarithm is less than or equal to .
Step 5
Split into separate intervals around the values that make the derivative or undefined.
Step 6
Step 6.1
Replace the variable with in the expression.
Step 6.2
Simplify the result.
Step 6.2.1
Simplify the numerator.
Step 6.2.1.1
Raise to the power of .
Step 6.2.1.2
Subtract from .
Step 6.2.1.3
Raise to the power of .
Step 6.2.2
Simplify the denominator.
Step 6.2.2.1
Add and .
Step 6.2.2.2
Subtract from .
Step 6.2.2.3
Raise to the power of .
Step 6.2.2.4
Raise to the power of .
Step 6.2.3
Simplify the expression.
Step 6.2.3.1
Multiply by .
Step 6.2.3.2
Multiply by .
Step 6.2.3.3
Divide by .
Step 6.2.4
The final answer is .
Step 6.3
At the derivative is . Since this is positive, the function is increasing on .
Increasing on since
Increasing on since
Step 7
Step 7.1
Replace the variable with in the expression.
Step 7.2
Simplify the result.
Step 7.2.1
Simplify the numerator.
Step 7.2.1.1
Raise to the power of .
Step 7.2.1.2
Subtract from .
Step 7.2.1.3
Raise to the power of .
Step 7.2.2
Simplify the denominator.
Step 7.2.2.1
Add and .
Step 7.2.2.2
Subtract from .
Step 7.2.2.3
Raise to the power of .
Step 7.2.2.4
Raise to the power of .
Step 7.2.3
Simplify the expression.
Step 7.2.3.1
Multiply by .
Step 7.2.3.2
Multiply by .
Step 7.2.3.3
Divide by .
Step 7.2.4
The final answer is .
Step 7.3
At the derivative is . Since this is negative, the function is decreasing on .
Decreasing on since
Decreasing on since
Step 8
Step 8.1
Replace the variable with in the expression.
Step 8.2
Simplify the result.
Step 8.2.1
Simplify the numerator.
Step 8.2.1.1
Apply the product rule to .
Step 8.2.1.2
Use the power rule to distribute the exponent.
Step 8.2.1.2.1
Apply the product rule to .
Step 8.2.1.2.2
Apply the product rule to .
Step 8.2.1.3
Raise to the power of .
Step 8.2.1.4
Multiply by .
Step 8.2.1.5
Raise to the power of .
Step 8.2.1.6
Raise to the power of .
Step 8.2.1.7
To write as a fraction with a common denominator, multiply by .
Step 8.2.1.8
Combine and .
Step 8.2.1.9
Combine the numerators over the common denominator.
Step 8.2.1.10
Simplify the numerator.
Step 8.2.1.10.1
Multiply by .
Step 8.2.1.10.2
Subtract from .
Step 8.2.1.11
Move the negative in front of the fraction.
Step 8.2.1.12
Combine exponents.
Step 8.2.1.12.1
Factor out negative.
Step 8.2.1.12.2
Combine and .
Step 8.2.1.12.3
Combine and .
Step 8.2.1.13
Simplify the numerator.
Step 8.2.1.13.1
Apply the product rule to .
Step 8.2.1.13.2
Combine exponents.
Step 8.2.1.13.2.1
Combine and .
Step 8.2.1.13.2.2
Combine and .
Step 8.2.1.13.3
Simplify the numerator.
Step 8.2.1.13.3.1
Raise to the power of .
Step 8.2.1.13.3.2
Raise to the power of .
Step 8.2.1.13.3.3
Combine exponents.
Step 8.2.1.13.3.3.1
Multiply by .
Step 8.2.1.13.3.3.2
Multiply by .
Step 8.2.1.13.4
Raise to the power of .
Step 8.2.1.14
Multiply the numerator by the reciprocal of the denominator.
Step 8.2.1.15
Multiply .
Step 8.2.1.15.1
Multiply by .
Step 8.2.1.15.2
Multiply by .
Step 8.2.2
Simplify the denominator.
Step 8.2.2.1
To write as a fraction with a common denominator, multiply by .
Step 8.2.2.2
Combine and .
Step 8.2.2.3
Combine the numerators over the common denominator.
Step 8.2.2.4
Simplify the numerator.
Step 8.2.2.4.1
Multiply by .
Step 8.2.2.4.2
Add and .
Step 8.2.2.5
Apply the product rule to .
Step 8.2.2.6
To write as a fraction with a common denominator, multiply by .
Step 8.2.2.7
Combine and .
Step 8.2.2.8
Combine the numerators over the common denominator.
Step 8.2.2.9
Simplify the numerator.
Step 8.2.2.9.1
Multiply by .
Step 8.2.2.9.2
Subtract from .
Step 8.2.2.10
Move the negative in front of the fraction.
Step 8.2.2.11
Apply the product rule to .
Step 8.2.2.12
Combine exponents.
Step 8.2.2.12.1
Combine and .
Step 8.2.2.12.2
Combine and .
Step 8.2.2.13
Simplify the numerator.
Step 8.2.2.13.1
Apply the product rule to .
Step 8.2.2.13.2
Combine exponents.
Step 8.2.2.13.2.1
Combine and .
Step 8.2.2.13.2.2
Rewrite as .
Step 8.2.2.13.2.3
Multiply the exponents in .
Step 8.2.2.13.2.3.1
Apply the power rule and multiply exponents, .
Step 8.2.2.13.2.3.2
Multiply by .
Step 8.2.2.13.2.4
Use the power rule to combine exponents.
Step 8.2.2.13.2.5
Add and .
Step 8.2.2.13.2.6
Combine and .
Step 8.2.2.13.3
Simplify the numerator.
Step 8.2.2.13.3.1
Raise to the power of .
Step 8.2.2.13.3.2
Raise to the power of .
Step 8.2.2.13.3.3
Multiply by .
Step 8.2.2.13.4
Raise to the power of .
Step 8.2.2.14
Raise to the power of .
Step 8.2.2.15
Multiply the numerator by the reciprocal of the denominator.
Step 8.2.2.16
Multiply .
Step 8.2.2.16.1
Multiply by .
Step 8.2.2.16.2
Multiply by .
Step 8.2.3
Multiply the numerator by the reciprocal of the denominator.
Step 8.2.4
Cancel the common factor of .
Step 8.2.4.1
Move the leading negative in into the numerator.
Step 8.2.4.2
Factor out of .
Step 8.2.4.3
Factor out of .
Step 8.2.4.4
Cancel the common factor.
Step 8.2.4.5
Rewrite the expression.
Step 8.2.5
Cancel the common factor of .
Step 8.2.5.1
Cancel the common factor.
Step 8.2.5.2
Rewrite the expression.
Step 8.2.6
Combine and .
Step 8.2.7
Move the negative in front of the fraction.
Step 8.2.8
The final answer is .
Step 8.3
At the derivative is . Since this is negative, the function is decreasing on .
Decreasing on since
Decreasing on since
Step 9
Step 9.1
Replace the variable with in the expression.
Step 9.2
Simplify the result.
Step 9.2.1
Simplify the numerator.
Step 9.2.1.1
Apply the product rule to .
Step 9.2.1.2
Apply the product rule to .
Step 9.2.1.3
Raise to the power of .
Step 9.2.1.4
Raise to the power of .
Step 9.2.1.5
To write as a fraction with a common denominator, multiply by .
Step 9.2.1.6
Combine and .
Step 9.2.1.7
Combine the numerators over the common denominator.
Step 9.2.1.8
Simplify the numerator.
Step 9.2.1.8.1
Multiply by .
Step 9.2.1.8.2
Subtract from .
Step 9.2.1.9
Move the negative in front of the fraction.
Step 9.2.1.10
Combine exponents.
Step 9.2.1.10.1
Factor out negative.
Step 9.2.1.10.2
Multiply by .
Step 9.2.1.10.3
Rewrite as .
Step 9.2.1.10.4
Use the power rule to combine exponents.
Step 9.2.1.10.5
Add and .
Step 9.2.1.11
Raise to the power of .
Step 9.2.1.12
Raise to the power of .
Step 9.2.1.13
Multiply by .
Step 9.2.2
Simplify the denominator.
Step 9.2.2.1
To write as a fraction with a common denominator, multiply by .
Step 9.2.2.2
Combine and .
Step 9.2.2.3
Combine the numerators over the common denominator.
Step 9.2.2.4
Simplify the numerator.
Step 9.2.2.4.1
Multiply by .
Step 9.2.2.4.2
Add and .
Step 9.2.2.5
Apply the product rule to .
Step 9.2.2.6
To write as a fraction with a common denominator, multiply by .
Step 9.2.2.7
Combine and .
Step 9.2.2.8
Combine the numerators over the common denominator.
Step 9.2.2.9
Simplify the numerator.
Step 9.2.2.9.1
Multiply by .
Step 9.2.2.9.2
Subtract from .
Step 9.2.2.10
Move the negative in front of the fraction.
Step 9.2.2.11
Apply the product rule to .
Step 9.2.2.12
Combine exponents.
Step 9.2.2.12.1
Combine and .
Step 9.2.2.12.2
Combine and .
Step 9.2.2.13
Simplify the numerator.
Step 9.2.2.13.1
Apply the product rule to .
Step 9.2.2.13.2
Combine exponents.
Step 9.2.2.13.2.1
Combine and .
Step 9.2.2.13.2.2
Rewrite as .
Step 9.2.2.13.2.3
Multiply the exponents in .
Step 9.2.2.13.2.3.1
Apply the power rule and multiply exponents, .
Step 9.2.2.13.2.3.2
Multiply by .
Step 9.2.2.13.2.4
Use the power rule to combine exponents.
Step 9.2.2.13.2.5
Add and .
Step 9.2.2.13.2.6
Combine and .
Step 9.2.2.13.3
Simplify the numerator.
Step 9.2.2.13.3.1
Raise to the power of .
Step 9.2.2.13.3.2
Raise to the power of .
Step 9.2.2.13.3.3
Multiply by .
Step 9.2.2.13.4
Raise to the power of .
Step 9.2.2.14
Raise to the power of .
Step 9.2.2.15
Multiply the numerator by the reciprocal of the denominator.
Step 9.2.2.16
Multiply .
Step 9.2.2.16.1
Multiply by .
Step 9.2.2.16.2
Multiply by .
Step 9.2.3
Multiply the numerator by the reciprocal of the denominator.
Step 9.2.4
Cancel the common factor of .
Step 9.2.4.1
Move the leading negative in into the numerator.
Step 9.2.4.2
Factor out of .
Step 9.2.4.3
Factor out of .
Step 9.2.4.4
Cancel the common factor.
Step 9.2.4.5
Rewrite the expression.
Step 9.2.5
Cancel the common factor of .
Step 9.2.5.1
Cancel the common factor.
Step 9.2.5.2
Rewrite the expression.
Step 9.2.6
Combine and .
Step 9.2.7
Move the negative in front of the fraction.
Step 9.2.8
The final answer is .
Step 9.3
At the derivative is . Since this is negative, the function is decreasing on .
Decreasing on since
Decreasing on since
Step 10
Step 10.1
Replace the variable with in the expression.
Step 10.2
Simplify the result.
Step 10.2.1
Simplify the numerator.
Step 10.2.1.1
Raise to the power of .
Step 10.2.1.2
Subtract from .
Step 10.2.1.3
Raise to the power of .
Step 10.2.2
Simplify the denominator.
Step 10.2.2.1
Add and .
Step 10.2.2.2
Subtract from .
Step 10.2.2.3
Raise to the power of .
Step 10.2.2.4
Raise to the power of .
Step 10.2.3
Simplify the expression.
Step 10.2.3.1
Multiply by .
Step 10.2.3.2
Multiply by .
Step 10.2.3.3
Divide by .
Step 10.2.4
The final answer is .
Step 10.3
At the derivative is . Since this is negative, the function is decreasing on .
Decreasing on since
Decreasing on since
Step 11
Step 11.1
Replace the variable with in the expression.
Step 11.2
Simplify the result.
Step 11.2.1
Simplify the numerator.
Step 11.2.1.1
Raise to the power of .
Step 11.2.1.2
Subtract from .
Step 11.2.1.3
Raise to the power of .
Step 11.2.2
Simplify the denominator.
Step 11.2.2.1
Add and .
Step 11.2.2.2
Subtract from .
Step 11.2.2.3
Raise to the power of .
Step 11.2.2.4
Raise to the power of .
Step 11.2.3
Simplify the expression.
Step 11.2.3.1
Multiply by .
Step 11.2.3.2
Multiply by .
Step 11.2.3.3
Divide by .
Step 11.2.4
The final answer is .
Step 11.3
At the derivative is . Since this is positive, the function is increasing on .
Increasing on since
Increasing on since
Step 12
List the intervals on which the function is increasing and decreasing.
Increasing on:
Decreasing on:
Step 13