Calculus Examples

Find the Horizontal Tangent Line y^3-27y=x^2-90
Step 1
Set each solution of as a function of .
Step 2
Because the variable in the equation has a degree greater than , use implicit differentiation to solve for the derivative .
Tap for more steps...
Step 2.1
Differentiate both sides of the equation.
Step 2.2
Differentiate the left side of the equation.
Tap for more steps...
Step 2.2.1
By the Sum Rule, the derivative of with respect to is .
Step 2.2.2
Evaluate .
Tap for more steps...
Step 2.2.2.1
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 2.2.2.1.1
To apply the Chain Rule, set as .
Step 2.2.2.1.2
Differentiate using the Power Rule which states that is where .
Step 2.2.2.1.3
Replace all occurrences of with .
Step 2.2.2.2
Rewrite as .
Step 2.2.3
Evaluate .
Tap for more steps...
Step 2.2.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.2.3.2
Rewrite as .
Step 2.3
Differentiate the right side of the equation.
Tap for more steps...
Step 2.3.1
By the Sum Rule, the derivative of with respect to is .
Step 2.3.2
Differentiate using the Power Rule which states that is where .
Step 2.3.3
Since is constant with respect to , the derivative of with respect to is .
Step 2.3.4
Add and .
Step 2.4
Reform the equation by setting the left side equal to the right side.
Step 2.5
Solve for .
Tap for more steps...
Step 2.5.1
Factor out of .
Tap for more steps...
Step 2.5.1.1
Factor out of .
Step 2.5.1.2
Factor out of .
Step 2.5.1.3
Factor out of .
Step 2.5.2
Rewrite as .
Step 2.5.3
Factor.
Tap for more steps...
Step 2.5.3.1
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 2.5.3.2
Remove unnecessary parentheses.
Step 2.5.4
Divide each term in by and simplify.
Tap for more steps...
Step 2.5.4.1
Divide each term in by .
Step 2.5.4.2
Simplify the left side.
Tap for more steps...
Step 2.5.4.2.1
Cancel the common factor of .
Tap for more steps...
Step 2.5.4.2.1.1
Cancel the common factor.
Step 2.5.4.2.1.2
Rewrite the expression.
Step 2.5.4.2.2
Cancel the common factor of .
Tap for more steps...
Step 2.5.4.2.2.1
Cancel the common factor.
Step 2.5.4.2.2.2
Rewrite the expression.
Step 2.5.4.2.3
Cancel the common factor of .
Tap for more steps...
Step 2.5.4.2.3.1
Cancel the common factor.
Step 2.5.4.2.3.2
Divide by .
Step 2.6
Replace with .
Step 3
Set the derivative equal to then solve the equation .
Tap for more steps...
Step 3.1
Set the numerator equal to zero.
Step 3.2
Divide each term in by and simplify.
Tap for more steps...
Step 3.2.1
Divide each term in by .
Step 3.2.2
Simplify the left side.
Tap for more steps...
Step 3.2.2.1
Cancel the common factor of .
Tap for more steps...
Step 3.2.2.1.1
Cancel the common factor.
Step 3.2.2.1.2
Divide by .
Step 3.2.3
Simplify the right side.
Tap for more steps...
Step 3.2.3.1
Divide by .
Step 4
Solve the function at .
Tap for more steps...
Step 4.1
Replace the variable with in the expression.
Step 4.2
Simplify the result.
Tap for more steps...
Step 4.2.1
Raising to any positive power yields .
Step 4.2.2
Subtract from .
Step 4.2.3
The final answer is .
Step 5
The horizontal tangent lines are
Step 6