Enter a problem...
Calculus Examples
Step 1
Step 1.1
Find the first derivative.
Step 1.1.1
By the Sum Rule, the derivative of with respect to is .
Step 1.1.2
Evaluate .
Step 1.1.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.2.2
Differentiate using the Power Rule which states that is where .
Step 1.1.2.3
Combine and .
Step 1.1.2.4
Multiply by .
Step 1.1.2.5
Combine and .
Step 1.1.2.6
Cancel the common factor of and .
Step 1.1.2.6.1
Factor out of .
Step 1.1.2.6.2
Cancel the common factors.
Step 1.1.2.6.2.1
Factor out of .
Step 1.1.2.6.2.2
Cancel the common factor.
Step 1.1.2.6.2.3
Rewrite the expression.
Step 1.1.2.6.2.4
Divide by .
Step 1.1.3
Evaluate .
Step 1.1.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.3.2
Differentiate using the Power Rule which states that is where .
Step 1.1.3.3
Multiply by .
Step 1.1.4
Evaluate .
Step 1.1.4.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.4.2
Differentiate using the Power Rule which states that is where .
Step 1.1.4.3
Multiply by .
Step 1.1.5
Differentiate using the Constant Rule.
Step 1.1.5.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.5.2
Add and .
Step 1.2
The first derivative of with respect to is .
Step 2
Step 2.1
Set the first derivative equal to .
Step 2.2
Factor out of .
Step 2.2.1
Factor out of .
Step 2.2.2
Factor out of .
Step 2.2.3
Factor out of .
Step 2.2.4
Factor out of .
Step 2.2.5
Factor out of .
Step 2.3
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 2.4
Set equal to .
Step 2.5
Set equal to and solve for .
Step 2.5.1
Set equal to .
Step 2.5.2
Solve for .
Step 2.5.2.1
Use the quadratic formula to find the solutions.
Step 2.5.2.2
Substitute the values , , and into the quadratic formula and solve for .
Step 2.5.2.3
Simplify.
Step 2.5.2.3.1
Simplify the numerator.
Step 2.5.2.3.1.1
Raise to the power of .
Step 2.5.2.3.1.2
Multiply .
Step 2.5.2.3.1.2.1
Multiply by .
Step 2.5.2.3.1.2.2
Multiply by .
Step 2.5.2.3.1.3
Add and .
Step 2.5.2.3.1.4
Rewrite as .
Step 2.5.2.3.1.4.1
Factor out of .
Step 2.5.2.3.1.4.2
Rewrite as .
Step 2.5.2.3.1.5
Pull terms out from under the radical.
Step 2.5.2.3.2
Multiply by .
Step 2.5.2.3.3
Simplify .
Step 2.5.2.4
Simplify the expression to solve for the portion of the .
Step 2.5.2.4.1
Simplify the numerator.
Step 2.5.2.4.1.1
Raise to the power of .
Step 2.5.2.4.1.2
Multiply .
Step 2.5.2.4.1.2.1
Multiply by .
Step 2.5.2.4.1.2.2
Multiply by .
Step 2.5.2.4.1.3
Add and .
Step 2.5.2.4.1.4
Rewrite as .
Step 2.5.2.4.1.4.1
Factor out of .
Step 2.5.2.4.1.4.2
Rewrite as .
Step 2.5.2.4.1.5
Pull terms out from under the radical.
Step 2.5.2.4.2
Multiply by .
Step 2.5.2.4.3
Simplify .
Step 2.5.2.4.4
Change the to .
Step 2.5.2.5
Simplify the expression to solve for the portion of the .
Step 2.5.2.5.1
Simplify the numerator.
Step 2.5.2.5.1.1
Raise to the power of .
Step 2.5.2.5.1.2
Multiply .
Step 2.5.2.5.1.2.1
Multiply by .
Step 2.5.2.5.1.2.2
Multiply by .
Step 2.5.2.5.1.3
Add and .
Step 2.5.2.5.1.4
Rewrite as .
Step 2.5.2.5.1.4.1
Factor out of .
Step 2.5.2.5.1.4.2
Rewrite as .
Step 2.5.2.5.1.5
Pull terms out from under the radical.
Step 2.5.2.5.2
Multiply by .
Step 2.5.2.5.3
Simplify .
Step 2.5.2.5.4
Change the to .
Step 2.5.2.6
The final answer is the combination of both solutions.
Step 2.6
The final solution is all the values that make true.
Step 3
Step 3.1
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Step 4
Step 4.1
Evaluate at .
Step 4.1.1
Substitute for .
Step 4.1.2
Simplify.
Step 4.1.2.1
Simplify each term.
Step 4.1.2.1.1
Raising to any positive power yields .
Step 4.1.2.1.2
Multiply by .
Step 4.1.2.1.3
Raising to any positive power yields .
Step 4.1.2.1.4
Multiply by .
Step 4.1.2.1.5
Raising to any positive power yields .
Step 4.1.2.1.6
Multiply by .
Step 4.1.2.2
Simplify by adding numbers.
Step 4.1.2.2.1
Add and .
Step 4.1.2.2.2
Add and .
Step 4.1.2.2.3
Add and .
Step 4.2
Evaluate at .
Step 4.2.1
Substitute for .
Step 4.2.2
Simplify.
Step 4.2.2.1
Simplify each term.
Step 4.2.2.1.1
Use the Binomial Theorem.
Step 4.2.2.1.2
Simplify each term.
Step 4.2.2.1.2.1
Raise to the power of .
Step 4.2.2.1.2.2
Raise to the power of .
Step 4.2.2.1.2.3
Multiply by .
Step 4.2.2.1.2.4
Multiply by .
Step 4.2.2.1.2.5
Raise to the power of .
Step 4.2.2.1.2.6
Multiply by .
Step 4.2.2.1.2.7
Apply the product rule to .
Step 4.2.2.1.2.8
Raise to the power of .
Step 4.2.2.1.2.9
Rewrite as .
Step 4.2.2.1.2.9.1
Use to rewrite as .
Step 4.2.2.1.2.9.2
Apply the power rule and multiply exponents, .
Step 4.2.2.1.2.9.3
Combine and .
Step 4.2.2.1.2.9.4
Cancel the common factor of .
Step 4.2.2.1.2.9.4.1
Cancel the common factor.
Step 4.2.2.1.2.9.4.2
Rewrite the expression.
Step 4.2.2.1.2.9.5
Evaluate the exponent.
Step 4.2.2.1.2.10
Multiply .
Step 4.2.2.1.2.10.1
Multiply by .
Step 4.2.2.1.2.10.2
Multiply by .
Step 4.2.2.1.2.11
Multiply by .
Step 4.2.2.1.2.12
Apply the product rule to .
Step 4.2.2.1.2.13
Raise to the power of .
Step 4.2.2.1.2.14
Rewrite as .
Step 4.2.2.1.2.15
Raise to the power of .
Step 4.2.2.1.2.16
Rewrite as .
Step 4.2.2.1.2.16.1
Factor out of .
Step 4.2.2.1.2.16.2
Rewrite as .
Step 4.2.2.1.2.17
Pull terms out from under the radical.
Step 4.2.2.1.2.18
Multiply by .
Step 4.2.2.1.2.19
Multiply by .
Step 4.2.2.1.2.20
Apply the product rule to .
Step 4.2.2.1.2.21
Raise to the power of .
Step 4.2.2.1.2.22
Rewrite as .
Step 4.2.2.1.2.22.1
Use to rewrite as .
Step 4.2.2.1.2.22.2
Apply the power rule and multiply exponents, .
Step 4.2.2.1.2.22.3
Combine and .
Step 4.2.2.1.2.22.4
Cancel the common factor of and .
Step 4.2.2.1.2.22.4.1
Factor out of .
Step 4.2.2.1.2.22.4.2
Cancel the common factors.
Step 4.2.2.1.2.22.4.2.1
Factor out of .
Step 4.2.2.1.2.22.4.2.2
Cancel the common factor.
Step 4.2.2.1.2.22.4.2.3
Rewrite the expression.
Step 4.2.2.1.2.22.4.2.4
Divide by .
Step 4.2.2.1.2.23
Raise to the power of .
Step 4.2.2.1.2.24
Multiply by .
Step 4.2.2.1.3
Add and .
Step 4.2.2.1.4
Add and .
Step 4.2.2.1.5
Subtract from .
Step 4.2.2.1.6
Apply the distributive property.
Step 4.2.2.1.7
Cancel the common factor of .
Step 4.2.2.1.7.1
Factor out of .
Step 4.2.2.1.7.2
Cancel the common factor.
Step 4.2.2.1.7.3
Rewrite the expression.
Step 4.2.2.1.8
Multiply by .
Step 4.2.2.1.9
Cancel the common factor of .
Step 4.2.2.1.9.1
Factor out of .
Step 4.2.2.1.9.2
Cancel the common factor.
Step 4.2.2.1.9.3
Rewrite the expression.
Step 4.2.2.1.10
Multiply by .
Step 4.2.2.1.11
Use the Binomial Theorem.
Step 4.2.2.1.12
Simplify each term.
Step 4.2.2.1.12.1
Raise to the power of .
Step 4.2.2.1.12.2
Raise to the power of .
Step 4.2.2.1.12.3
Multiply by .
Step 4.2.2.1.12.4
Multiply by .
Step 4.2.2.1.12.5
Multiply by .
Step 4.2.2.1.12.6
Apply the product rule to .
Step 4.2.2.1.12.7
Raise to the power of .
Step 4.2.2.1.12.8
Rewrite as .
Step 4.2.2.1.12.8.1
Use to rewrite as .
Step 4.2.2.1.12.8.2
Apply the power rule and multiply exponents, .
Step 4.2.2.1.12.8.3
Combine and .
Step 4.2.2.1.12.8.4
Cancel the common factor of .
Step 4.2.2.1.12.8.4.1
Cancel the common factor.
Step 4.2.2.1.12.8.4.2
Rewrite the expression.
Step 4.2.2.1.12.8.5
Evaluate the exponent.
Step 4.2.2.1.12.9
Multiply .
Step 4.2.2.1.12.9.1
Multiply by .
Step 4.2.2.1.12.9.2
Multiply by .
Step 4.2.2.1.12.10
Apply the product rule to .
Step 4.2.2.1.12.11
Raise to the power of .
Step 4.2.2.1.12.12
Rewrite as .
Step 4.2.2.1.12.13
Raise to the power of .
Step 4.2.2.1.12.14
Rewrite as .
Step 4.2.2.1.12.14.1
Factor out of .
Step 4.2.2.1.12.14.2
Rewrite as .
Step 4.2.2.1.12.15
Pull terms out from under the radical.
Step 4.2.2.1.12.16
Multiply by .
Step 4.2.2.1.13
Subtract from .
Step 4.2.2.1.14
Add and .
Step 4.2.2.1.15
Apply the distributive property.
Step 4.2.2.1.16
Multiply by .
Step 4.2.2.1.17
Multiply by .
Step 4.2.2.1.18
Rewrite as .
Step 4.2.2.1.19
Expand using the FOIL Method.
Step 4.2.2.1.19.1
Apply the distributive property.
Step 4.2.2.1.19.2
Apply the distributive property.
Step 4.2.2.1.19.3
Apply the distributive property.
Step 4.2.2.1.20
Simplify and combine like terms.
Step 4.2.2.1.20.1
Simplify each term.
Step 4.2.2.1.20.1.1
Multiply by .
Step 4.2.2.1.20.1.2
Multiply by .
Step 4.2.2.1.20.1.3
Multiply by .
Step 4.2.2.1.20.1.4
Multiply .
Step 4.2.2.1.20.1.4.1
Multiply by .
Step 4.2.2.1.20.1.4.2
Raise to the power of .
Step 4.2.2.1.20.1.4.3
Raise to the power of .
Step 4.2.2.1.20.1.4.4
Use the power rule to combine exponents.
Step 4.2.2.1.20.1.4.5
Add and .
Step 4.2.2.1.20.1.5
Rewrite as .
Step 4.2.2.1.20.1.5.1
Use to rewrite as .
Step 4.2.2.1.20.1.5.2
Apply the power rule and multiply exponents, .
Step 4.2.2.1.20.1.5.3
Combine and .
Step 4.2.2.1.20.1.5.4
Cancel the common factor of .
Step 4.2.2.1.20.1.5.4.1
Cancel the common factor.
Step 4.2.2.1.20.1.5.4.2
Rewrite the expression.
Step 4.2.2.1.20.1.5.5
Evaluate the exponent.
Step 4.2.2.1.20.1.6
Multiply by .
Step 4.2.2.1.20.2
Add and .
Step 4.2.2.1.20.3
Subtract from .
Step 4.2.2.1.21
Apply the distributive property.
Step 4.2.2.1.22
Multiply by .
Step 4.2.2.1.23
Multiply by .
Step 4.2.2.2
Simplify by adding terms.
Step 4.2.2.2.1
Subtract from .
Step 4.2.2.2.2
Simplify by adding and subtracting.
Step 4.2.2.2.2.1
Subtract from .
Step 4.2.2.2.2.2
Add and .
Step 4.2.2.2.3
Add and .
Step 4.2.2.2.4
Add and .
Step 4.3
Evaluate at .
Step 4.3.1
Substitute for .
Step 4.3.2
Simplify.
Step 4.3.2.1
Simplify each term.
Step 4.3.2.1.1
Use the Binomial Theorem.
Step 4.3.2.1.2
Simplify each term.
Step 4.3.2.1.2.1
Raise to the power of .
Step 4.3.2.1.2.2
Multiply by by adding the exponents.
Step 4.3.2.1.2.2.1
Move .
Step 4.3.2.1.2.2.2
Multiply by .
Step 4.3.2.1.2.2.2.1
Raise to the power of .
Step 4.3.2.1.2.2.2.2
Use the power rule to combine exponents.
Step 4.3.2.1.2.2.3
Add and .
Step 4.3.2.1.2.3
Raise to the power of .
Step 4.3.2.1.2.4
Multiply by .
Step 4.3.2.1.2.5
Raise to the power of .
Step 4.3.2.1.2.6
Multiply by .
Step 4.3.2.1.2.7
Apply the product rule to .
Step 4.3.2.1.2.8
Raise to the power of .
Step 4.3.2.1.2.9
Rewrite as .
Step 4.3.2.1.2.9.1
Use to rewrite as .
Step 4.3.2.1.2.9.2
Apply the power rule and multiply exponents, .
Step 4.3.2.1.2.9.3
Combine and .
Step 4.3.2.1.2.9.4
Cancel the common factor of .
Step 4.3.2.1.2.9.4.1
Cancel the common factor.
Step 4.3.2.1.2.9.4.2
Rewrite the expression.
Step 4.3.2.1.2.9.5
Evaluate the exponent.
Step 4.3.2.1.2.10
Multiply .
Step 4.3.2.1.2.10.1
Multiply by .
Step 4.3.2.1.2.10.2
Multiply by .
Step 4.3.2.1.2.11
Multiply by .
Step 4.3.2.1.2.12
Apply the product rule to .
Step 4.3.2.1.2.13
Raise to the power of .
Step 4.3.2.1.2.14
Rewrite as .
Step 4.3.2.1.2.15
Raise to the power of .
Step 4.3.2.1.2.16
Rewrite as .
Step 4.3.2.1.2.16.1
Factor out of .
Step 4.3.2.1.2.16.2
Rewrite as .
Step 4.3.2.1.2.17
Pull terms out from under the radical.
Step 4.3.2.1.2.18
Multiply by .
Step 4.3.2.1.2.19
Multiply by .
Step 4.3.2.1.2.20
Apply the product rule to .
Step 4.3.2.1.2.21
Raise to the power of .
Step 4.3.2.1.2.22
Rewrite as .
Step 4.3.2.1.2.22.1
Use to rewrite as .
Step 4.3.2.1.2.22.2
Apply the power rule and multiply exponents, .
Step 4.3.2.1.2.22.3
Combine and .
Step 4.3.2.1.2.22.4
Cancel the common factor of and .
Step 4.3.2.1.2.22.4.1
Factor out of .
Step 4.3.2.1.2.22.4.2
Cancel the common factors.
Step 4.3.2.1.2.22.4.2.1
Factor out of .
Step 4.3.2.1.2.22.4.2.2
Cancel the common factor.
Step 4.3.2.1.2.22.4.2.3
Rewrite the expression.
Step 4.3.2.1.2.22.4.2.4
Divide by .
Step 4.3.2.1.2.23
Raise to the power of .
Step 4.3.2.1.2.24
Multiply by .
Step 4.3.2.1.3
Add and .
Step 4.3.2.1.4
Add and .
Step 4.3.2.1.5
Add and .
Step 4.3.2.1.6
Apply the distributive property.
Step 4.3.2.1.7
Cancel the common factor of .
Step 4.3.2.1.7.1
Factor out of .
Step 4.3.2.1.7.2
Cancel the common factor.
Step 4.3.2.1.7.3
Rewrite the expression.
Step 4.3.2.1.8
Multiply by .
Step 4.3.2.1.9
Cancel the common factor of .
Step 4.3.2.1.9.1
Factor out of .
Step 4.3.2.1.9.2
Cancel the common factor.
Step 4.3.2.1.9.3
Rewrite the expression.
Step 4.3.2.1.10
Multiply by .
Step 4.3.2.1.11
Use the Binomial Theorem.
Step 4.3.2.1.12
Simplify each term.
Step 4.3.2.1.12.1
Raise to the power of .
Step 4.3.2.1.12.2
Multiply by by adding the exponents.
Step 4.3.2.1.12.2.1
Move .
Step 4.3.2.1.12.2.2
Multiply by .
Step 4.3.2.1.12.2.2.1
Raise to the power of .
Step 4.3.2.1.12.2.2.2
Use the power rule to combine exponents.
Step 4.3.2.1.12.2.3
Add and .
Step 4.3.2.1.12.3
Raise to the power of .
Step 4.3.2.1.12.4
Multiply by .
Step 4.3.2.1.12.5
Multiply by .
Step 4.3.2.1.12.6
Apply the product rule to .
Step 4.3.2.1.12.7
Raise to the power of .
Step 4.3.2.1.12.8
Rewrite as .
Step 4.3.2.1.12.8.1
Use to rewrite as .
Step 4.3.2.1.12.8.2
Apply the power rule and multiply exponents, .
Step 4.3.2.1.12.8.3
Combine and .
Step 4.3.2.1.12.8.4
Cancel the common factor of .
Step 4.3.2.1.12.8.4.1
Cancel the common factor.
Step 4.3.2.1.12.8.4.2
Rewrite the expression.
Step 4.3.2.1.12.8.5
Evaluate the exponent.
Step 4.3.2.1.12.9
Multiply .
Step 4.3.2.1.12.9.1
Multiply by .
Step 4.3.2.1.12.9.2
Multiply by .
Step 4.3.2.1.12.10
Apply the product rule to .
Step 4.3.2.1.12.11
Raise to the power of .
Step 4.3.2.1.12.12
Rewrite as .
Step 4.3.2.1.12.13
Raise to the power of .
Step 4.3.2.1.12.14
Rewrite as .
Step 4.3.2.1.12.14.1
Factor out of .
Step 4.3.2.1.12.14.2
Rewrite as .
Step 4.3.2.1.12.15
Pull terms out from under the radical.
Step 4.3.2.1.12.16
Multiply by .
Step 4.3.2.1.13
Subtract from .
Step 4.3.2.1.14
Subtract from .
Step 4.3.2.1.15
Apply the distributive property.
Step 4.3.2.1.16
Multiply by .
Step 4.3.2.1.17
Multiply by .
Step 4.3.2.1.18
Rewrite as .
Step 4.3.2.1.19
Expand using the FOIL Method.
Step 4.3.2.1.19.1
Apply the distributive property.
Step 4.3.2.1.19.2
Apply the distributive property.
Step 4.3.2.1.19.3
Apply the distributive property.
Step 4.3.2.1.20
Simplify and combine like terms.
Step 4.3.2.1.20.1
Simplify each term.
Step 4.3.2.1.20.1.1
Multiply by .
Step 4.3.2.1.20.1.2
Multiply by .
Step 4.3.2.1.20.1.3
Multiply by .
Step 4.3.2.1.20.1.4
Multiply .
Step 4.3.2.1.20.1.4.1
Multiply by .
Step 4.3.2.1.20.1.4.2
Raise to the power of .
Step 4.3.2.1.20.1.4.3
Raise to the power of .
Step 4.3.2.1.20.1.4.4
Use the power rule to combine exponents.
Step 4.3.2.1.20.1.4.5
Add and .
Step 4.3.2.1.20.1.5
Rewrite as .
Step 4.3.2.1.20.1.5.1
Use to rewrite as .
Step 4.3.2.1.20.1.5.2
Apply the power rule and multiply exponents, .
Step 4.3.2.1.20.1.5.3
Combine and .
Step 4.3.2.1.20.1.5.4
Cancel the common factor of .
Step 4.3.2.1.20.1.5.4.1
Cancel the common factor.
Step 4.3.2.1.20.1.5.4.2
Rewrite the expression.
Step 4.3.2.1.20.1.5.5
Evaluate the exponent.
Step 4.3.2.1.20.1.6
Multiply by .
Step 4.3.2.1.20.2
Add and .
Step 4.3.2.1.20.3
Add and .
Step 4.3.2.1.21
Apply the distributive property.
Step 4.3.2.1.22
Multiply by .
Step 4.3.2.1.23
Multiply by .
Step 4.3.2.2
Simplify by adding terms.
Step 4.3.2.2.1
Subtract from .
Step 4.3.2.2.2
Simplify by adding and subtracting.
Step 4.3.2.2.2.1
Subtract from .
Step 4.3.2.2.2.2
Add and .
Step 4.3.2.2.3
Subtract from .
Step 4.3.2.2.4
Add and .
Step 4.4
List all of the points.
Step 5