Enter a problem...
Calculus Examples
Step 1
Step 1.1
Find the first derivative.
Step 1.1.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.2
Differentiate using the Product Rule which states that is where and .
Step 1.1.3
Differentiate.
Step 1.1.3.1
By the Sum Rule, the derivative of with respect to is .
Step 1.1.3.2
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.3.3
Differentiate using the Power Rule which states that is where .
Step 1.1.3.4
Multiply by .
Step 1.1.3.5
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.3.6
Simplify the expression.
Step 1.1.3.6.1
Add and .
Step 1.1.3.6.2
Move to the left of .
Step 1.1.4
Differentiate using the Product Rule which states that is where and .
Step 1.1.5
Differentiate.
Step 1.1.5.1
By the Sum Rule, the derivative of with respect to is .
Step 1.1.5.2
Differentiate using the Power Rule which states that is where .
Step 1.1.5.3
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.5.4
Simplify the expression.
Step 1.1.5.4.1
Add and .
Step 1.1.5.4.2
Multiply by .
Step 1.1.5.5
By the Sum Rule, the derivative of with respect to is .
Step 1.1.5.6
Differentiate using the Power Rule which states that is where .
Step 1.1.5.7
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.5.8
Simplify by adding terms.
Step 1.1.5.8.1
Add and .
Step 1.1.5.8.2
Multiply by .
Step 1.1.5.8.3
Add and .
Step 1.1.5.8.4
Add and .
Step 1.1.6
Simplify.
Step 1.1.6.1
Apply the distributive property.
Step 1.1.6.2
Apply the distributive property.
Step 1.1.6.3
Apply the distributive property.
Step 1.1.6.4
Apply the distributive property.
Step 1.1.6.5
Apply the distributive property.
Step 1.1.6.6
Apply the distributive property.
Step 1.1.6.7
Apply the distributive property.
Step 1.1.6.8
Apply the distributive property.
Step 1.1.6.9
Apply the distributive property.
Step 1.1.6.10
Apply the distributive property.
Step 1.1.6.11
Combine terms.
Step 1.1.6.11.1
Raise to the power of .
Step 1.1.6.11.2
Raise to the power of .
Step 1.1.6.11.3
Use the power rule to combine exponents.
Step 1.1.6.11.4
Add and .
Step 1.1.6.11.5
Multiply by .
Step 1.1.6.11.6
Multiply by .
Step 1.1.6.11.7
Multiply by .
Step 1.1.6.11.8
Multiply by .
Step 1.1.6.11.9
Multiply by .
Step 1.1.6.11.10
Multiply by .
Step 1.1.6.11.11
Multiply by .
Step 1.1.6.11.12
Multiply by .
Step 1.1.6.11.13
Add and .
Step 1.1.6.11.14
Multiply by .
Step 1.1.6.11.15
Raise to the power of .
Step 1.1.6.11.16
Raise to the power of .
Step 1.1.6.11.17
Use the power rule to combine exponents.
Step 1.1.6.11.18
Add and .
Step 1.1.6.11.19
Multiply by .
Step 1.1.6.11.20
Multiply by .
Step 1.1.6.11.21
Multiply by .
Step 1.1.6.11.22
Multiply by .
Step 1.1.6.11.23
Multiply by .
Step 1.1.6.11.24
Multiply by .
Step 1.1.6.11.25
Multiply by .
Step 1.1.6.11.26
Add and .
Step 1.1.6.11.27
Add and .
Step 1.1.6.11.28
Add and .
Step 1.1.6.11.29
Subtract from .
Step 1.2
The first derivative of with respect to is .
Step 2
Step 2.1
Set the first derivative equal to .
Step 2.2
Factor out of .
Step 2.2.1
Factor out of .
Step 2.2.2
Factor out of .
Step 2.2.3
Factor out of .
Step 2.2.4
Factor out of .
Step 2.2.5
Factor out of .
Step 2.3
Divide each term in by and simplify.
Step 2.3.1
Divide each term in by .
Step 2.3.2
Simplify the left side.
Step 2.3.2.1
Cancel the common factor of .
Step 2.3.2.1.1
Cancel the common factor.
Step 2.3.2.1.2
Divide by .
Step 2.3.3
Simplify the right side.
Step 2.3.3.1
Divide by .
Step 2.4
Use the quadratic formula to find the solutions.
Step 2.5
Substitute the values , , and into the quadratic formula and solve for .
Step 2.6
Simplify.
Step 2.6.1
Simplify the numerator.
Step 2.6.1.1
Raise to the power of .
Step 2.6.1.2
Multiply .
Step 2.6.1.2.1
Multiply by .
Step 2.6.1.2.2
Multiply by .
Step 2.6.1.3
Add and .
Step 2.6.1.4
Rewrite as .
Step 2.6.1.4.1
Factor out of .
Step 2.6.1.4.2
Rewrite as .
Step 2.6.1.5
Pull terms out from under the radical.
Step 2.6.2
Multiply by .
Step 2.6.3
Simplify .
Step 2.7
Simplify the expression to solve for the portion of the .
Step 2.7.1
Simplify the numerator.
Step 2.7.1.1
Raise to the power of .
Step 2.7.1.2
Multiply .
Step 2.7.1.2.1
Multiply by .
Step 2.7.1.2.2
Multiply by .
Step 2.7.1.3
Add and .
Step 2.7.1.4
Rewrite as .
Step 2.7.1.4.1
Factor out of .
Step 2.7.1.4.2
Rewrite as .
Step 2.7.1.5
Pull terms out from under the radical.
Step 2.7.2
Multiply by .
Step 2.7.3
Simplify .
Step 2.7.4
Change the to .
Step 2.7.5
Rewrite as .
Step 2.7.6
Factor out of .
Step 2.7.7
Factor out of .
Step 2.7.8
Move the negative in front of the fraction.
Step 2.8
Simplify the expression to solve for the portion of the .
Step 2.8.1
Simplify the numerator.
Step 2.8.1.1
Raise to the power of .
Step 2.8.1.2
Multiply .
Step 2.8.1.2.1
Multiply by .
Step 2.8.1.2.2
Multiply by .
Step 2.8.1.3
Add and .
Step 2.8.1.4
Rewrite as .
Step 2.8.1.4.1
Factor out of .
Step 2.8.1.4.2
Rewrite as .
Step 2.8.1.5
Pull terms out from under the radical.
Step 2.8.2
Multiply by .
Step 2.8.3
Simplify .
Step 2.8.4
Change the to .
Step 2.8.5
Rewrite as .
Step 2.8.6
Factor out of .
Step 2.8.7
Factor out of .
Step 2.8.8
Move the negative in front of the fraction.
Step 2.9
The final answer is the combination of both solutions.
Step 3
Step 3.1
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Step 4
Step 4.1
Evaluate at .
Step 4.1.1
Substitute for .
Step 4.1.2
Simplify.
Step 4.1.2.1
To write as a fraction with a common denominator, multiply by .
Step 4.1.2.2
Combine fractions.
Step 4.1.2.2.1
Combine and .
Step 4.1.2.2.2
Combine the numerators over the common denominator.
Step 4.1.2.3
Simplify the numerator.
Step 4.1.2.3.1
Apply the distributive property.
Step 4.1.2.3.2
Multiply by .
Step 4.1.2.3.3
Multiply .
Step 4.1.2.3.3.1
Multiply by .
Step 4.1.2.3.3.2
Multiply by .
Step 4.1.2.3.4
Multiply by .
Step 4.1.2.3.5
Subtract from .
Step 4.1.2.4
Combine and .
Step 4.1.2.5
To write as a fraction with a common denominator, multiply by .
Step 4.1.2.6
Combine fractions.
Step 4.1.2.6.1
Combine and .
Step 4.1.2.6.2
Combine the numerators over the common denominator.
Step 4.1.2.7
Simplify the numerator.
Step 4.1.2.7.1
Apply the distributive property.
Step 4.1.2.7.2
Multiply by .
Step 4.1.2.7.3
Multiply .
Step 4.1.2.7.3.1
Multiply by .
Step 4.1.2.7.3.2
Multiply by .
Step 4.1.2.7.4
Multiply by .
Step 4.1.2.7.5
Add and .
Step 4.1.2.8
Multiply .
Step 4.1.2.8.1
Multiply by .
Step 4.1.2.8.2
Multiply by .
Step 4.1.2.9
Group and together.
Step 4.1.2.10
Expand using the FOIL Method.
Step 4.1.2.10.1
Apply the distributive property.
Step 4.1.2.10.2
Apply the distributive property.
Step 4.1.2.10.3
Apply the distributive property.
Step 4.1.2.11
Simplify and combine like terms.
Step 4.1.2.11.1
Simplify each term.
Step 4.1.2.11.1.1
Multiply by .
Step 4.1.2.11.1.2
Move to the left of .
Step 4.1.2.11.1.3
Combine using the product rule for radicals.
Step 4.1.2.11.1.4
Multiply by .
Step 4.1.2.11.1.5
Rewrite as .
Step 4.1.2.11.1.6
Pull terms out from under the radical, assuming positive real numbers.
Step 4.1.2.11.2
Add and .
Step 4.1.2.11.3
Subtract from .
Step 4.1.2.12
Simplify each term.
Step 4.1.2.12.1
Cancel the common factor of .
Step 4.1.2.12.1.1
Move the leading negative in into the numerator.
Step 4.1.2.12.1.2
Factor out of .
Step 4.1.2.12.1.3
Cancel the common factor.
Step 4.1.2.12.1.4
Rewrite the expression.
Step 4.1.2.12.2
Move the negative in front of the fraction.
Step 4.1.2.13
To write as a fraction with a common denominator, multiply by .
Step 4.1.2.14
Combine fractions.
Step 4.1.2.14.1
Combine and .
Step 4.1.2.14.2
Combine the numerators over the common denominator.
Step 4.1.2.15
Simplify the numerator.
Step 4.1.2.15.1
Apply the distributive property.
Step 4.1.2.15.2
Multiply by .
Step 4.1.2.15.3
Multiply .
Step 4.1.2.15.3.1
Multiply by .
Step 4.1.2.15.3.2
Multiply by .
Step 4.1.2.15.4
Multiply by .
Step 4.1.2.15.5
Subtract from .
Step 4.1.2.16
Multiply .
Step 4.1.2.16.1
Multiply by .
Step 4.1.2.16.2
Multiply by .
Step 4.1.2.17
Group and together.
Step 4.1.2.18
Expand using the FOIL Method.
Step 4.1.2.18.1
Apply the distributive property.
Step 4.1.2.18.2
Apply the distributive property.
Step 4.1.2.18.3
Apply the distributive property.
Step 4.1.2.19
Simplify and combine like terms.
Step 4.1.2.19.1
Simplify each term.
Step 4.1.2.19.1.1
Multiply by .
Step 4.1.2.19.1.2
Multiply by .
Step 4.1.2.19.1.3
Move to the left of .
Step 4.1.2.19.1.4
Multiply .
Step 4.1.2.19.1.4.1
Raise to the power of .
Step 4.1.2.19.1.4.2
Raise to the power of .
Step 4.1.2.19.1.4.3
Use the power rule to combine exponents.
Step 4.1.2.19.1.4.4
Add and .
Step 4.1.2.19.1.5
Rewrite as .
Step 4.1.2.19.1.5.1
Use to rewrite as .
Step 4.1.2.19.1.5.2
Apply the power rule and multiply exponents, .
Step 4.1.2.19.1.5.3
Combine and .
Step 4.1.2.19.1.5.4
Cancel the common factor of .
Step 4.1.2.19.1.5.4.1
Cancel the common factor.
Step 4.1.2.19.1.5.4.2
Rewrite the expression.
Step 4.1.2.19.1.5.5
Evaluate the exponent.
Step 4.1.2.19.1.6
Multiply by .
Step 4.1.2.19.2
Add and .
Step 4.1.2.19.3
Subtract from .
Step 4.2
Evaluate at .
Step 4.2.1
Substitute for .
Step 4.2.2
Simplify.
Step 4.2.2.1
To write as a fraction with a common denominator, multiply by .
Step 4.2.2.2
Combine fractions.
Step 4.2.2.2.1
Combine and .
Step 4.2.2.2.2
Combine the numerators over the common denominator.
Step 4.2.2.3
Simplify the numerator.
Step 4.2.2.3.1
Apply the distributive property.
Step 4.2.2.3.2
Multiply by .
Step 4.2.2.3.3
Multiply by .
Step 4.2.2.3.4
Subtract from .
Step 4.2.2.4
Combine and .
Step 4.2.2.5
To write as a fraction with a common denominator, multiply by .
Step 4.2.2.6
Combine fractions.
Step 4.2.2.6.1
Combine and .
Step 4.2.2.6.2
Combine the numerators over the common denominator.
Step 4.2.2.7
Simplify the numerator.
Step 4.2.2.7.1
Apply the distributive property.
Step 4.2.2.7.2
Multiply by .
Step 4.2.2.7.3
Multiply by .
Step 4.2.2.7.4
Add and .
Step 4.2.2.8
Multiply .
Step 4.2.2.8.1
Multiply by .
Step 4.2.2.8.2
Multiply by .
Step 4.2.2.9
Group and together.
Step 4.2.2.10
Expand using the FOIL Method.
Step 4.2.2.10.1
Apply the distributive property.
Step 4.2.2.10.2
Apply the distributive property.
Step 4.2.2.10.3
Apply the distributive property.
Step 4.2.2.11
Simplify and combine like terms.
Step 4.2.2.11.1
Simplify each term.
Step 4.2.2.11.1.1
Multiply by .
Step 4.2.2.11.1.2
Multiply by .
Step 4.2.2.11.1.3
Multiply by .
Step 4.2.2.11.1.4
Multiply .
Step 4.2.2.11.1.4.1
Multiply by .
Step 4.2.2.11.1.4.2
Multiply by .
Step 4.2.2.11.1.4.3
Raise to the power of .
Step 4.2.2.11.1.4.4
Raise to the power of .
Step 4.2.2.11.1.4.5
Use the power rule to combine exponents.
Step 4.2.2.11.1.4.6
Add and .
Step 4.2.2.11.1.5
Rewrite as .
Step 4.2.2.11.1.5.1
Use to rewrite as .
Step 4.2.2.11.1.5.2
Apply the power rule and multiply exponents, .
Step 4.2.2.11.1.5.3
Combine and .
Step 4.2.2.11.1.5.4
Cancel the common factor of .
Step 4.2.2.11.1.5.4.1
Cancel the common factor.
Step 4.2.2.11.1.5.4.2
Rewrite the expression.
Step 4.2.2.11.1.5.5
Evaluate the exponent.
Step 4.2.2.11.2
Add and .
Step 4.2.2.11.3
Add and .
Step 4.2.2.12
Simplify each term.
Step 4.2.2.12.1
Cancel the common factor of .
Step 4.2.2.12.1.1
Move the leading negative in into the numerator.
Step 4.2.2.12.1.2
Factor out of .
Step 4.2.2.12.1.3
Cancel the common factor.
Step 4.2.2.12.1.4
Rewrite the expression.
Step 4.2.2.12.2
Move the negative in front of the fraction.
Step 4.2.2.13
To write as a fraction with a common denominator, multiply by .
Step 4.2.2.14
Combine fractions.
Step 4.2.2.14.1
Combine and .
Step 4.2.2.14.2
Combine the numerators over the common denominator.
Step 4.2.2.15
Simplify the numerator.
Step 4.2.2.15.1
Apply the distributive property.
Step 4.2.2.15.2
Multiply by .
Step 4.2.2.15.3
Multiply by .
Step 4.2.2.15.4
Subtract from .
Step 4.2.2.16
Multiply .
Step 4.2.2.16.1
Multiply by .
Step 4.2.2.16.2
Multiply by .
Step 4.2.2.17
Group and together.
Step 4.2.2.18
Expand using the FOIL Method.
Step 4.2.2.18.1
Apply the distributive property.
Step 4.2.2.18.2
Apply the distributive property.
Step 4.2.2.18.3
Apply the distributive property.
Step 4.2.2.19
Simplify and combine like terms.
Step 4.2.2.19.1
Simplify each term.
Step 4.2.2.19.1.1
Multiply by .
Step 4.2.2.19.1.2
Multiply by .
Step 4.2.2.19.1.3
Multiply by .
Step 4.2.2.19.1.4
Multiply .
Step 4.2.2.19.1.4.1
Multiply by .
Step 4.2.2.19.1.4.2
Raise to the power of .
Step 4.2.2.19.1.4.3
Raise to the power of .
Step 4.2.2.19.1.4.4
Use the power rule to combine exponents.
Step 4.2.2.19.1.4.5
Add and .
Step 4.2.2.19.1.5
Rewrite as .
Step 4.2.2.19.1.5.1
Use to rewrite as .
Step 4.2.2.19.1.5.2
Apply the power rule and multiply exponents, .
Step 4.2.2.19.1.5.3
Combine and .
Step 4.2.2.19.1.5.4
Cancel the common factor of .
Step 4.2.2.19.1.5.4.1
Cancel the common factor.
Step 4.2.2.19.1.5.4.2
Rewrite the expression.
Step 4.2.2.19.1.5.5
Evaluate the exponent.
Step 4.2.2.19.1.6
Multiply by .
Step 4.2.2.19.2
Add and .
Step 4.2.2.19.3
Add and .
Step 4.3
List all of the points.
Step 5