Enter a problem...
Calculus Examples
Step 1
Step 1.1
Find the first derivative.
Step 1.1.1
Rewrite as .
Step 1.1.2
Expand using the FOIL Method.
Step 1.1.2.1
Apply the distributive property.
Step 1.1.2.2
Apply the distributive property.
Step 1.1.2.3
Apply the distributive property.
Step 1.1.3
Simplify and combine like terms.
Step 1.1.3.1
Simplify each term.
Step 1.1.3.1.1
Rewrite using the commutative property of multiplication.
Step 1.1.3.1.2
Multiply by by adding the exponents.
Step 1.1.3.1.2.1
Move .
Step 1.1.3.1.2.2
Multiply by .
Step 1.1.3.1.3
Multiply by .
Step 1.1.3.1.4
Multiply by .
Step 1.1.3.1.5
Multiply by .
Step 1.1.3.1.6
Multiply by .
Step 1.1.3.2
Subtract from .
Step 1.1.4
By the Sum Rule, the derivative of with respect to is .
Step 1.1.5
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.6
Differentiate using the Power Rule which states that is where .
Step 1.1.7
Multiply by .
Step 1.1.8
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.9
Differentiate using the Power Rule which states that is where .
Step 1.1.10
Multiply by .
Step 1.1.11
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.12
Add and .
Step 1.2
The first derivative of with respect to is .
Step 2
Step 2.1
Set the first derivative equal to .
Step 2.2
Add to both sides of the equation.
Step 2.3
Divide each term in by and simplify.
Step 2.3.1
Divide each term in by .
Step 2.3.2
Simplify the left side.
Step 2.3.2.1
Cancel the common factor of .
Step 2.3.2.1.1
Cancel the common factor.
Step 2.3.2.1.2
Divide by .
Step 2.3.3
Simplify the right side.
Step 2.3.3.1
Cancel the common factor of and .
Step 2.3.3.1.1
Factor out of .
Step 2.3.3.1.2
Cancel the common factors.
Step 2.3.3.1.2.1
Factor out of .
Step 2.3.3.1.2.2
Cancel the common factor.
Step 2.3.3.1.2.3
Rewrite the expression.
Step 3
The values which make the derivative equal to are .
Step 4
After finding the point that makes the derivative equal to or undefined, the interval to check where is increasing and where it is decreasing is .
Step 5
Step 5.1
Replace the variable with in the expression.
Step 5.2
Simplify the result.
Step 5.2.1
Simplify each term.
Step 5.2.1.1
Cancel the common factor of .
Step 5.2.1.1.1
Factor out of .
Step 5.2.1.1.2
Cancel the common factor.
Step 5.2.1.1.3
Rewrite the expression.
Step 5.2.1.2
Multiply by .
Step 5.2.2
Subtract from .
Step 5.2.3
The final answer is .
Step 5.3
At the derivative is . Since this is negative, the function is decreasing on .
Decreasing on since
Decreasing on since
Step 6
Step 6.1
Replace the variable with in the expression.
Step 6.2
Simplify the result.
Step 6.2.1
Simplify each term.
Step 6.2.1.1
Cancel the common factor of .
Step 6.2.1.1.1
Factor out of .
Step 6.2.1.1.2
Cancel the common factor.
Step 6.2.1.1.3
Rewrite the expression.
Step 6.2.1.2
Multiply by .
Step 6.2.2
Subtract from .
Step 6.2.3
The final answer is .
Step 6.3
At the derivative is . Since this is positive, the function is increasing on .
Increasing on since
Increasing on since
Step 7
List the intervals on which the function is increasing and decreasing.
Increasing on:
Decreasing on:
Step 8