Enter a problem...
Calculus Examples
Step 1
Step 1.1
Use to rewrite as .
Step 1.2
Differentiate using the chain rule, which states that is where and .
Step 1.2.1
To apply the Chain Rule, set as .
Step 1.2.2
Differentiate using the Power Rule which states that is where .
Step 1.2.3
Replace all occurrences of with .
Step 1.3
To write as a fraction with a common denominator, multiply by .
Step 1.4
Combine and .
Step 1.5
Combine the numerators over the common denominator.
Step 1.6
Simplify the numerator.
Step 1.6.1
Multiply by .
Step 1.6.2
Subtract from .
Step 1.7
Combine fractions.
Step 1.7.1
Move the negative in front of the fraction.
Step 1.7.2
Combine and .
Step 1.7.3
Move to the denominator using the negative exponent rule .
Step 1.8
By the Sum Rule, the derivative of with respect to is .
Step 1.9
Since is constant with respect to , the derivative of with respect to is .
Step 1.10
Add and .
Step 1.11
Since is constant with respect to , the derivative of with respect to is .
Step 1.12
Differentiate using the Power Rule which states that is where .
Step 1.13
Multiply by .
Step 1.14
Since is constant with respect to , the derivative of with respect to is .
Step 1.15
Simplify terms.
Step 1.15.1
Add and .
Step 1.15.2
Combine and .
Step 1.15.3
Combine and .
Step 1.15.4
Factor out of .
Step 1.16
Cancel the common factors.
Step 1.16.1
Factor out of .
Step 1.16.2
Cancel the common factor.
Step 1.16.3
Rewrite the expression.
Step 1.17
Move the negative in front of the fraction.
Step 2
Step 2.1
Differentiate using the Constant Multiple Rule.
Step 2.1.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.1.2
Apply basic rules of exponents.
Step 2.1.2.1
Rewrite as .
Step 2.1.2.2
Multiply the exponents in .
Step 2.1.2.2.1
Apply the power rule and multiply exponents, .
Step 2.1.2.2.2
Combine and .
Step 2.1.2.2.3
Move the negative in front of the fraction.
Step 2.2
Differentiate using the chain rule, which states that is where and .
Step 2.2.1
To apply the Chain Rule, set as .
Step 2.2.2
Differentiate using the Power Rule which states that is where .
Step 2.2.3
Replace all occurrences of with .
Step 2.3
To write as a fraction with a common denominator, multiply by .
Step 2.4
Combine and .
Step 2.5
Combine the numerators over the common denominator.
Step 2.6
Simplify the numerator.
Step 2.6.1
Multiply by .
Step 2.6.2
Subtract from .
Step 2.7
Combine fractions.
Step 2.7.1
Move the negative in front of the fraction.
Step 2.7.2
Combine and .
Step 2.7.3
Simplify the expression.
Step 2.7.3.1
Move to the denominator using the negative exponent rule .
Step 2.7.3.2
Multiply by .
Step 2.7.3.3
Multiply by .
Step 2.7.4
Combine and .
Step 2.8
By the Sum Rule, the derivative of with respect to is .
Step 2.9
Since is constant with respect to , the derivative of with respect to is .
Step 2.10
Add and .
Step 2.11
Since is constant with respect to , the derivative of with respect to is .
Step 2.12
Differentiate using the Power Rule which states that is where .
Step 2.13
Multiply by .
Step 2.14
Since is constant with respect to , the derivative of with respect to is .
Step 2.15
Combine fractions.
Step 2.15.1
Add and .
Step 2.15.2
Combine and .
Step 2.15.3
Combine and .
Step 2.16
Raise to the power of .
Step 2.17
Raise to the power of .
Step 2.18
Use the power rule to combine exponents.
Step 2.19
Add and .
Step 2.20
Factor out of .
Step 2.21
Cancel the common factors.
Step 2.21.1
Factor out of .
Step 2.21.2
Cancel the common factor.
Step 2.21.3
Rewrite the expression.
Step 2.22
Move the negative in front of the fraction.