Calculus Examples

Find the Third Derivative f(x,y)=sin(x-3y)^2
Step 1
Find the first derivative.
Tap for more steps...
Step 1.1
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 1.1.1
To apply the Chain Rule, set as .
Step 1.1.2
Differentiate using the Power Rule which states that is where .
Step 1.1.3
Replace all occurrences of with .
Step 1.2
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 1.2.1
To apply the Chain Rule, set as .
Step 1.2.2
The derivative of with respect to is .
Step 1.2.3
Replace all occurrences of with .
Step 1.3
Differentiate.
Tap for more steps...
Step 1.3.1
By the Sum Rule, the derivative of with respect to is .
Step 1.3.2
Differentiate using the Power Rule which states that is where .
Step 1.3.3
Since is constant with respect to , the derivative of with respect to is .
Step 1.3.4
Simplify the expression.
Tap for more steps...
Step 1.3.4.1
Add and .
Step 1.3.4.2
Multiply by .
Step 1.4
Simplify.
Tap for more steps...
Step 1.4.1
Reorder the factors of .
Step 1.4.2
Reorder and .
Step 1.4.3
Reorder and .
Step 1.4.4
Apply the sine double-angle identity.
Step 1.4.5
Apply the distributive property.
Step 1.4.6
Multiply by .
Step 2
Find the second derivative.
Tap for more steps...
Step 2.1
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 2.1.1
To apply the Chain Rule, set as .
Step 2.1.2
The derivative of with respect to is .
Step 2.1.3
Replace all occurrences of with .
Step 2.2
Differentiate.
Tap for more steps...
Step 2.2.1
By the Sum Rule, the derivative of with respect to is .
Step 2.2.2
Since is constant with respect to , the derivative of with respect to is .
Step 2.2.3
Differentiate using the Power Rule which states that is where .
Step 2.2.4
Multiply by .
Step 2.2.5
Since is constant with respect to , the derivative of with respect to is .
Step 2.2.6
Simplify the expression.
Tap for more steps...
Step 2.2.6.1
Add and .
Step 2.2.6.2
Move to the left of .
Step 3
Find the third derivative.
Tap for more steps...
Step 3.1
Since is constant with respect to , the derivative of with respect to is .
Step 3.2
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 3.2.1
To apply the Chain Rule, set as .
Step 3.2.2
The derivative of with respect to is .
Step 3.2.3
Replace all occurrences of with .
Step 3.3
Differentiate.
Tap for more steps...
Step 3.3.1
Multiply by .
Step 3.3.2
By the Sum Rule, the derivative of with respect to is .
Step 3.3.3
Since is constant with respect to , the derivative of with respect to is .
Step 3.3.4
Differentiate using the Power Rule which states that is where .
Step 3.3.5
Multiply by .
Step 3.3.6
Since is constant with respect to , the derivative of with respect to is .
Step 3.3.7
Simplify the expression.
Tap for more steps...
Step 3.3.7.1
Add and .
Step 3.3.7.2
Multiply by .