Calculus Examples

Find the Second Derivative g(x)=8x(2x-5)^9
Step 1
Find the first derivative.
Tap for more steps...
Step 1.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.2
Differentiate using the Product Rule which states that is where and .
Step 1.3
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 1.3.1
To apply the Chain Rule, set as .
Step 1.3.2
Differentiate using the Power Rule which states that is where .
Step 1.3.3
Replace all occurrences of with .
Step 1.4
Differentiate.
Tap for more steps...
Step 1.4.1
By the Sum Rule, the derivative of with respect to is .
Step 1.4.2
Since is constant with respect to , the derivative of with respect to is .
Step 1.4.3
Differentiate using the Power Rule which states that is where .
Step 1.4.4
Multiply by .
Step 1.4.5
Since is constant with respect to , the derivative of with respect to is .
Step 1.4.6
Simplify the expression.
Tap for more steps...
Step 1.4.6.1
Add and .
Step 1.4.6.2
Multiply by .
Step 1.4.7
Differentiate using the Power Rule which states that is where .
Step 1.4.8
Multiply by .
Step 1.5
Simplify.
Tap for more steps...
Step 1.5.1
Apply the distributive property.
Step 1.5.2
Multiply by .
Step 1.5.3
Factor out of .
Tap for more steps...
Step 1.5.3.1
Factor out of .
Step 1.5.3.2
Factor out of .
Step 1.5.3.3
Factor out of .
Step 1.5.4
Add and .
Step 2
Find the second derivative.
Tap for more steps...
Step 2.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.2
Differentiate using the Product Rule which states that is where and .
Step 2.3
Differentiate.
Tap for more steps...
Step 2.3.1
By the Sum Rule, the derivative of with respect to is .
Step 2.3.2
Since is constant with respect to , the derivative of with respect to is .
Step 2.3.3
Differentiate using the Power Rule which states that is where .
Step 2.3.4
Multiply by .
Step 2.3.5
Since is constant with respect to , the derivative of with respect to is .
Step 2.3.6
Simplify the expression.
Tap for more steps...
Step 2.3.6.1
Add and .
Step 2.3.6.2
Move to the left of .
Step 2.4
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 2.4.1
To apply the Chain Rule, set as .
Step 2.4.2
Differentiate using the Power Rule which states that is where .
Step 2.4.3
Replace all occurrences of with .
Step 2.5
Differentiate.
Tap for more steps...
Step 2.5.1
Move to the left of .
Step 2.5.2
By the Sum Rule, the derivative of with respect to is .
Step 2.5.3
Since is constant with respect to , the derivative of with respect to is .
Step 2.5.4
Differentiate using the Power Rule which states that is where .
Step 2.5.5
Multiply by .
Step 2.5.6
Since is constant with respect to , the derivative of with respect to is .
Step 2.5.7
Simplify the expression.
Tap for more steps...
Step 2.5.7.1
Add and .
Step 2.5.7.2
Multiply by .
Step 2.6
Simplify.
Tap for more steps...
Step 2.6.1
Apply the distributive property.
Step 2.6.2
Apply the distributive property.
Step 2.6.3
Multiply by .
Step 2.6.4
Multiply by .
Step 2.6.5
Multiply by .
Step 2.6.6
Factor out of .
Tap for more steps...
Step 2.6.6.1
Factor out of .
Step 2.6.6.2
Factor out of .
Step 2.6.6.3
Factor out of .
Step 3
The second derivative of with respect to is .