Calculus Examples

Find the Fourth Derivative h(t) = seventh root of t-7e^t
Step 1
Find the first derivative.
Tap for more steps...
Step 1.1
By the Sum Rule, the derivative of with respect to is .
Step 1.2
Evaluate .
Tap for more steps...
Step 1.2.1
Use to rewrite as .
Step 1.2.2
Differentiate using the Power Rule which states that is where .
Step 1.2.3
To write as a fraction with a common denominator, multiply by .
Step 1.2.4
Combine and .
Step 1.2.5
Combine the numerators over the common denominator.
Step 1.2.6
Simplify the numerator.
Tap for more steps...
Step 1.2.6.1
Multiply by .
Step 1.2.6.2
Subtract from .
Step 1.2.7
Move the negative in front of the fraction.
Step 1.3
Evaluate .
Tap for more steps...
Step 1.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.3.2
Differentiate using the Exponential Rule which states that is where =.
Step 1.4
Simplify.
Tap for more steps...
Step 1.4.1
Rewrite the expression using the negative exponent rule .
Step 1.4.2
Multiply by .
Step 2
Find the second derivative.
Tap for more steps...
Step 2.1
By the Sum Rule, the derivative of with respect to is .
Step 2.2
Evaluate .
Tap for more steps...
Step 2.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.2.2
Rewrite as .
Step 2.2.3
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 2.2.3.1
To apply the Chain Rule, set as .
Step 2.2.3.2
Differentiate using the Power Rule which states that is where .
Step 2.2.3.3
Replace all occurrences of with .
Step 2.2.4
Differentiate using the Power Rule which states that is where .
Step 2.2.5
Multiply the exponents in .
Tap for more steps...
Step 2.2.5.1
Apply the power rule and multiply exponents, .
Step 2.2.5.2
Multiply .
Tap for more steps...
Step 2.2.5.2.1
Combine and .
Step 2.2.5.2.2
Multiply by .
Step 2.2.5.3
Move the negative in front of the fraction.
Step 2.2.6
To write as a fraction with a common denominator, multiply by .
Step 2.2.7
Combine and .
Step 2.2.8
Combine the numerators over the common denominator.
Step 2.2.9
Simplify the numerator.
Tap for more steps...
Step 2.2.9.1
Multiply by .
Step 2.2.9.2
Subtract from .
Step 2.2.10
Move the negative in front of the fraction.
Step 2.2.11
Combine and .
Step 2.2.12
Combine and .
Step 2.2.13
Multiply by by adding the exponents.
Tap for more steps...
Step 2.2.13.1
Move .
Step 2.2.13.2
Use the power rule to combine exponents.
Step 2.2.13.3
Combine the numerators over the common denominator.
Step 2.2.13.4
Subtract from .
Step 2.2.13.5
Move the negative in front of the fraction.
Step 2.2.14
Move to the denominator using the negative exponent rule .
Step 2.2.15
Multiply by .
Step 2.2.16
Multiply by .
Step 2.3
Evaluate .
Tap for more steps...
Step 2.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.3.2
Differentiate using the Exponential Rule which states that is where =.
Step 3
Find the third derivative.
Tap for more steps...
Step 3.1
By the Sum Rule, the derivative of with respect to is .
Step 3.2
Evaluate .
Tap for more steps...
Step 3.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 3.2.2
Rewrite as .
Step 3.2.3
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 3.2.3.1
To apply the Chain Rule, set as .
Step 3.2.3.2
Differentiate using the Power Rule which states that is where .
Step 3.2.3.3
Replace all occurrences of with .
Step 3.2.4
Differentiate using the Power Rule which states that is where .
Step 3.2.5
Multiply the exponents in .
Tap for more steps...
Step 3.2.5.1
Apply the power rule and multiply exponents, .
Step 3.2.5.2
Multiply .
Tap for more steps...
Step 3.2.5.2.1
Combine and .
Step 3.2.5.2.2
Multiply by .
Step 3.2.5.3
Move the negative in front of the fraction.
Step 3.2.6
To write as a fraction with a common denominator, multiply by .
Step 3.2.7
Combine and .
Step 3.2.8
Combine the numerators over the common denominator.
Step 3.2.9
Simplify the numerator.
Tap for more steps...
Step 3.2.9.1
Multiply by .
Step 3.2.9.2
Subtract from .
Step 3.2.10
Combine and .
Step 3.2.11
Combine and .
Step 3.2.12
Multiply by by adding the exponents.
Tap for more steps...
Step 3.2.12.1
Move .
Step 3.2.12.2
Use the power rule to combine exponents.
Step 3.2.12.3
Combine the numerators over the common denominator.
Step 3.2.12.4
Add and .
Step 3.2.12.5
Move the negative in front of the fraction.
Step 3.2.13
Move to the denominator using the negative exponent rule .
Step 3.2.14
Multiply by .
Step 3.2.15
Multiply by .
Step 3.2.16
Multiply by .
Step 3.2.17
Multiply by .
Step 3.2.18
Multiply by .
Step 3.3
Evaluate .
Tap for more steps...
Step 3.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 3.3.2
Differentiate using the Exponential Rule which states that is where =.
Step 4
Find the fourth derivative.
Tap for more steps...
Step 4.1
By the Sum Rule, the derivative of with respect to is .
Step 4.2
Evaluate .
Tap for more steps...
Step 4.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 4.2.2
Rewrite as .
Step 4.2.3
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 4.2.3.1
To apply the Chain Rule, set as .
Step 4.2.3.2
Differentiate using the Power Rule which states that is where .
Step 4.2.3.3
Replace all occurrences of with .
Step 4.2.4
Differentiate using the Power Rule which states that is where .
Step 4.2.5
Multiply the exponents in .
Tap for more steps...
Step 4.2.5.1
Apply the power rule and multiply exponents, .
Step 4.2.5.2
Multiply .
Tap for more steps...
Step 4.2.5.2.1
Combine and .
Step 4.2.5.2.2
Multiply by .
Step 4.2.5.3
Move the negative in front of the fraction.
Step 4.2.6
To write as a fraction with a common denominator, multiply by .
Step 4.2.7
Combine and .
Step 4.2.8
Combine the numerators over the common denominator.
Step 4.2.9
Simplify the numerator.
Tap for more steps...
Step 4.2.9.1
Multiply by .
Step 4.2.9.2
Subtract from .
Step 4.2.10
Combine and .
Step 4.2.11
Combine and .
Step 4.2.12
Multiply by by adding the exponents.
Tap for more steps...
Step 4.2.12.1
Move .
Step 4.2.12.2
Use the power rule to combine exponents.
Step 4.2.12.3
Combine the numerators over the common denominator.
Step 4.2.12.4
Add and .
Step 4.2.12.5
Move the negative in front of the fraction.
Step 4.2.13
Move to the denominator using the negative exponent rule .
Step 4.2.14
Multiply by .
Step 4.2.15
Multiply by .
Step 4.2.16
Multiply by .
Step 4.3
Evaluate .
Tap for more steps...
Step 4.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 4.3.2
Differentiate using the Exponential Rule which states that is where =.
Step 5
The fourth derivative of with respect to is .