Calculus Examples

Solve by Substitution 3x^2-9y=0 , -9x+3y^2=0
,
Step 1
Solve for in .
Tap for more steps...
Step 1.1
Subtract from both sides of the equation.
Step 1.2
Divide each term in by and simplify.
Tap for more steps...
Step 1.2.1
Divide each term in by .
Step 1.2.2
Simplify the left side.
Tap for more steps...
Step 1.2.2.1
Cancel the common factor of .
Tap for more steps...
Step 1.2.2.1.1
Cancel the common factor.
Step 1.2.2.1.2
Divide by .
Step 1.2.3
Simplify the right side.
Tap for more steps...
Step 1.2.3.1
Cancel the common factor of and .
Tap for more steps...
Step 1.2.3.1.1
Factor out of .
Step 1.2.3.1.2
Cancel the common factors.
Tap for more steps...
Step 1.2.3.1.2.1
Factor out of .
Step 1.2.3.1.2.2
Cancel the common factor.
Step 1.2.3.1.2.3
Rewrite the expression.
Step 2
Replace all occurrences of with in each equation.
Tap for more steps...
Step 2.1
Replace all occurrences of in with .
Step 2.2
Simplify the left side.
Tap for more steps...
Step 2.2.1
Simplify each term.
Tap for more steps...
Step 2.2.1.1
Apply the product rule to .
Step 2.2.1.2
Multiply the exponents in .
Tap for more steps...
Step 2.2.1.2.1
Apply the power rule and multiply exponents, .
Step 2.2.1.2.2
Multiply by .
Step 2.2.1.3
Raise to the power of .
Step 2.2.1.4
Cancel the common factor of .
Tap for more steps...
Step 2.2.1.4.1
Factor out of .
Step 2.2.1.4.2
Cancel the common factor.
Step 2.2.1.4.3
Rewrite the expression.
Step 3
Solve for in .
Tap for more steps...
Step 3.1
Factor out of .
Tap for more steps...
Step 3.1.1
Reorder and .
Step 3.1.2
Factor out of .
Step 3.1.3
Factor out of .
Step 3.1.4
Factor out of .
Step 3.2
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 3.3
Set equal to .
Step 3.4
Set equal to and solve for .
Tap for more steps...
Step 3.4.1
Set equal to .
Step 3.4.2
Solve for .
Tap for more steps...
Step 3.4.2.1
Move the negative in front of the fraction.
Step 3.4.2.2
Subtract from both sides of the equation.
Step 3.4.2.3
Multiply both sides of the equation by .
Step 3.4.2.4
Simplify both sides of the equation.
Tap for more steps...
Step 3.4.2.4.1
Simplify the left side.
Tap for more steps...
Step 3.4.2.4.1.1
Simplify .
Tap for more steps...
Step 3.4.2.4.1.1.1
Cancel the common factor of .
Tap for more steps...
Step 3.4.2.4.1.1.1.1
Move the leading negative in into the numerator.
Step 3.4.2.4.1.1.1.2
Factor out of .
Step 3.4.2.4.1.1.1.3
Cancel the common factor.
Step 3.4.2.4.1.1.1.4
Rewrite the expression.
Step 3.4.2.4.1.1.2
Multiply.
Tap for more steps...
Step 3.4.2.4.1.1.2.1
Multiply by .
Step 3.4.2.4.1.1.2.2
Multiply by .
Step 3.4.2.4.2
Simplify the right side.
Tap for more steps...
Step 3.4.2.4.2.1
Multiply by .
Step 3.4.2.5
Subtract from both sides of the equation.
Step 3.4.2.6
Factor the left side of the equation.
Tap for more steps...
Step 3.4.2.6.1
Rewrite as .
Step 3.4.2.6.2
Since both terms are perfect cubes, factor using the difference of cubes formula, where and .
Step 3.4.2.6.3
Simplify.
Tap for more steps...
Step 3.4.2.6.3.1
Move to the left of .
Step 3.4.2.6.3.2
Multiply by .
Step 3.4.2.6.3.3
Raise to the power of .
Step 3.4.2.7
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 3.4.2.8
Set equal to and solve for .
Tap for more steps...
Step 3.4.2.8.1
Set equal to .
Step 3.4.2.8.2
Add to both sides of the equation.
Step 3.4.2.9
Set equal to and solve for .
Tap for more steps...
Step 3.4.2.9.1
Set equal to .
Step 3.4.2.9.2
Solve for .
Tap for more steps...
Step 3.4.2.9.2.1
Use the quadratic formula to find the solutions.
Step 3.4.2.9.2.2
Substitute the values , , and into the quadratic formula and solve for .
Step 3.4.2.9.2.3
Simplify.
Tap for more steps...
Step 3.4.2.9.2.3.1
Simplify the numerator.
Tap for more steps...
Step 3.4.2.9.2.3.1.1
Raise to the power of .
Step 3.4.2.9.2.3.1.2
Multiply .
Tap for more steps...
Step 3.4.2.9.2.3.1.2.1
Multiply by .
Step 3.4.2.9.2.3.1.2.2
Multiply by .
Step 3.4.2.9.2.3.1.3
Subtract from .
Step 3.4.2.9.2.3.1.4
Rewrite as .
Step 3.4.2.9.2.3.1.5
Rewrite as .
Step 3.4.2.9.2.3.1.6
Rewrite as .
Step 3.4.2.9.2.3.1.7
Rewrite as .
Tap for more steps...
Step 3.4.2.9.2.3.1.7.1
Factor out of .
Step 3.4.2.9.2.3.1.7.2
Rewrite as .
Step 3.4.2.9.2.3.1.8
Pull terms out from under the radical.
Step 3.4.2.9.2.3.1.9
Move to the left of .
Step 3.4.2.9.2.3.2
Multiply by .
Step 3.4.2.9.2.4
Simplify the expression to solve for the portion of the .
Tap for more steps...
Step 3.4.2.9.2.4.1
Simplify the numerator.
Tap for more steps...
Step 3.4.2.9.2.4.1.1
Raise to the power of .
Step 3.4.2.9.2.4.1.2
Multiply .
Tap for more steps...
Step 3.4.2.9.2.4.1.2.1
Multiply by .
Step 3.4.2.9.2.4.1.2.2
Multiply by .
Step 3.4.2.9.2.4.1.3
Subtract from .
Step 3.4.2.9.2.4.1.4
Rewrite as .
Step 3.4.2.9.2.4.1.5
Rewrite as .
Step 3.4.2.9.2.4.1.6
Rewrite as .
Step 3.4.2.9.2.4.1.7
Rewrite as .
Tap for more steps...
Step 3.4.2.9.2.4.1.7.1
Factor out of .
Step 3.4.2.9.2.4.1.7.2
Rewrite as .
Step 3.4.2.9.2.4.1.8
Pull terms out from under the radical.
Step 3.4.2.9.2.4.1.9
Move to the left of .
Step 3.4.2.9.2.4.2
Multiply by .
Step 3.4.2.9.2.4.3
Change the to .
Step 3.4.2.9.2.4.4
Rewrite as .
Step 3.4.2.9.2.4.5
Factor out of .
Step 3.4.2.9.2.4.6
Factor out of .
Step 3.4.2.9.2.4.7
Move the negative in front of the fraction.
Step 3.4.2.9.2.5
Simplify the expression to solve for the portion of the .
Tap for more steps...
Step 3.4.2.9.2.5.1
Simplify the numerator.
Tap for more steps...
Step 3.4.2.9.2.5.1.1
Raise to the power of .
Step 3.4.2.9.2.5.1.2
Multiply .
Tap for more steps...
Step 3.4.2.9.2.5.1.2.1
Multiply by .
Step 3.4.2.9.2.5.1.2.2
Multiply by .
Step 3.4.2.9.2.5.1.3
Subtract from .
Step 3.4.2.9.2.5.1.4
Rewrite as .
Step 3.4.2.9.2.5.1.5
Rewrite as .
Step 3.4.2.9.2.5.1.6
Rewrite as .
Step 3.4.2.9.2.5.1.7
Rewrite as .
Tap for more steps...
Step 3.4.2.9.2.5.1.7.1
Factor out of .
Step 3.4.2.9.2.5.1.7.2
Rewrite as .
Step 3.4.2.9.2.5.1.8
Pull terms out from under the radical.
Step 3.4.2.9.2.5.1.9
Move to the left of .
Step 3.4.2.9.2.5.2
Multiply by .
Step 3.4.2.9.2.5.3
Change the to .
Step 3.4.2.9.2.5.4
Rewrite as .
Step 3.4.2.9.2.5.5
Factor out of .
Step 3.4.2.9.2.5.6
Factor out of .
Step 3.4.2.9.2.5.7
Move the negative in front of the fraction.
Step 3.4.2.9.2.6
The final answer is the combination of both solutions.
Step 3.4.2.10
The final solution is all the values that make true.
Step 3.5
The final solution is all the values that make true.
Step 4
Replace all occurrences of with in each equation.
Tap for more steps...
Step 4.1
Replace all occurrences of in with .
Step 4.2
Simplify the right side.
Tap for more steps...
Step 4.2.1
Simplify .
Tap for more steps...
Step 4.2.1.1
Raising to any positive power yields .
Step 4.2.1.2
Divide by .
Step 5
Replace all occurrences of with in each equation.
Tap for more steps...
Step 5.1
Replace all occurrences of in with .
Step 5.2
Simplify the right side.
Tap for more steps...
Step 5.2.1
Cancel the common factor of and .
Tap for more steps...
Step 5.2.1.1
Factor out of .
Step 5.2.1.2
Cancel the common factors.
Tap for more steps...
Step 5.2.1.2.1
Factor out of .
Step 5.2.1.2.2
Cancel the common factor.
Step 5.2.1.2.3
Rewrite the expression.
Step 5.2.1.2.4
Divide by .
Step 6
Replace all occurrences of with in each equation.
Tap for more steps...
Step 6.1
Replace all occurrences of in with .
Step 6.2
Simplify the right side.
Tap for more steps...
Step 6.2.1
Simplify .
Tap for more steps...
Step 6.2.1.1
Raising to any positive power yields .
Step 6.2.1.2
Divide by .
Step 7
Replace all occurrences of with in each equation.
Tap for more steps...
Step 7.1
Replace all occurrences of in with .
Step 7.2
Simplify the right side.
Tap for more steps...
Step 7.2.1
Cancel the common factor of and .
Tap for more steps...
Step 7.2.1.1
Factor out of .
Step 7.2.1.2
Cancel the common factors.
Tap for more steps...
Step 7.2.1.2.1
Factor out of .
Step 7.2.1.2.2
Cancel the common factor.
Step 7.2.1.2.3
Rewrite the expression.
Step 7.2.1.2.4
Divide by .
Step 8
Replace all occurrences of with in each equation.
Tap for more steps...
Step 8.1
Replace all occurrences of in with .
Step 8.2
Simplify the right side.
Tap for more steps...
Step 8.2.1
Simplify .
Tap for more steps...
Step 8.2.1.1
Simplify the numerator.
Tap for more steps...
Step 8.2.1.1.1
Apply the product rule to .
Step 8.2.1.1.2
Raise to the power of .
Step 8.2.1.1.3
Apply the product rule to .
Step 8.2.1.1.4
Raise to the power of .
Step 8.2.1.1.5
Rewrite as .
Step 8.2.1.1.6
Expand using the FOIL Method.
Tap for more steps...
Step 8.2.1.1.6.1
Apply the distributive property.
Step 8.2.1.1.6.2
Apply the distributive property.
Step 8.2.1.1.6.3
Apply the distributive property.
Step 8.2.1.1.7
Simplify and combine like terms.
Tap for more steps...
Step 8.2.1.1.7.1
Simplify each term.
Tap for more steps...
Step 8.2.1.1.7.1.1
Multiply by .
Step 8.2.1.1.7.1.2
Multiply by .
Step 8.2.1.1.7.1.3
Multiply by .
Step 8.2.1.1.7.1.4
Multiply .
Tap for more steps...
Step 8.2.1.1.7.1.4.1
Multiply by .
Step 8.2.1.1.7.1.4.2
Raise to the power of .
Step 8.2.1.1.7.1.4.3
Raise to the power of .
Step 8.2.1.1.7.1.4.4
Use the power rule to combine exponents.
Step 8.2.1.1.7.1.4.5
Add and .
Step 8.2.1.1.7.1.4.6
Raise to the power of .
Step 8.2.1.1.7.1.4.7
Raise to the power of .
Step 8.2.1.1.7.1.4.8
Use the power rule to combine exponents.
Step 8.2.1.1.7.1.4.9
Add and .
Step 8.2.1.1.7.1.5
Rewrite as .
Step 8.2.1.1.7.1.6
Multiply by .
Step 8.2.1.1.7.1.7
Rewrite as .
Tap for more steps...
Step 8.2.1.1.7.1.7.1
Use to rewrite as .
Step 8.2.1.1.7.1.7.2
Apply the power rule and multiply exponents, .
Step 8.2.1.1.7.1.7.3
Combine and .
Step 8.2.1.1.7.1.7.4
Cancel the common factor of .
Tap for more steps...
Step 8.2.1.1.7.1.7.4.1
Cancel the common factor.
Step 8.2.1.1.7.1.7.4.2
Rewrite the expression.
Step 8.2.1.1.7.1.7.5
Evaluate the exponent.
Step 8.2.1.1.7.1.8
Multiply by .
Step 8.2.1.1.7.2
Subtract from .
Step 8.2.1.1.7.3
Subtract from .
Step 8.2.1.1.8
Reorder and .
Step 8.2.1.1.9
Cancel the common factor of and .
Tap for more steps...
Step 8.2.1.1.9.1
Factor out of .
Step 8.2.1.1.9.2
Factor out of .
Step 8.2.1.1.9.3
Factor out of .
Step 8.2.1.1.9.4
Cancel the common factors.
Tap for more steps...
Step 8.2.1.1.9.4.1
Factor out of .
Step 8.2.1.1.9.4.2
Cancel the common factor.
Step 8.2.1.1.9.4.3
Rewrite the expression.
Step 8.2.1.1.10
Multiply by .
Step 8.2.1.2
Multiply the numerator by the reciprocal of the denominator.
Step 8.2.1.3
Multiply .
Tap for more steps...
Step 8.2.1.3.1
Multiply by .
Step 8.2.1.3.2
Multiply by .
Step 8.2.1.4
Cancel the common factor of and .
Tap for more steps...
Step 8.2.1.4.1
Factor out of .
Step 8.2.1.4.2
Factor out of .
Step 8.2.1.4.3
Factor out of .
Step 8.2.1.4.4
Cancel the common factors.
Tap for more steps...
Step 8.2.1.4.4.1
Factor out of .
Step 8.2.1.4.4.2
Cancel the common factor.
Step 8.2.1.4.4.3
Rewrite the expression.
Step 8.2.1.5
Rewrite as .
Step 8.2.1.6
Factor out of .
Step 8.2.1.7
Factor out of .
Step 8.2.1.8
Move the negative in front of the fraction.
Step 9
Replace all occurrences of with in each equation.
Tap for more steps...
Step 9.1
Replace all occurrences of in with .
Step 9.2
Simplify the right side.
Tap for more steps...
Step 9.2.1
Simplify .
Tap for more steps...
Step 9.2.1.1
Raising to any positive power yields .
Step 9.2.1.2
Divide by .
Step 10
Replace all occurrences of with in each equation.
Tap for more steps...
Step 10.1
Replace all occurrences of in with .
Step 10.2
Simplify the right side.
Tap for more steps...
Step 10.2.1
Cancel the common factor of and .
Tap for more steps...
Step 10.2.1.1
Factor out of .
Step 10.2.1.2
Cancel the common factors.
Tap for more steps...
Step 10.2.1.2.1
Factor out of .
Step 10.2.1.2.2
Cancel the common factor.
Step 10.2.1.2.3
Rewrite the expression.
Step 10.2.1.2.4
Divide by .
Step 11
Replace all occurrences of with in each equation.
Tap for more steps...
Step 11.1
Replace all occurrences of in with .
Step 11.2
Simplify the right side.
Tap for more steps...
Step 11.2.1
Simplify .
Tap for more steps...
Step 11.2.1.1
Simplify the numerator.
Tap for more steps...
Step 11.2.1.1.1
Apply the product rule to .
Step 11.2.1.1.2
Raise to the power of .
Step 11.2.1.1.3
Apply the product rule to .
Step 11.2.1.1.4
Raise to the power of .
Step 11.2.1.1.5
Rewrite as .
Step 11.2.1.1.6
Expand using the FOIL Method.
Tap for more steps...
Step 11.2.1.1.6.1
Apply the distributive property.
Step 11.2.1.1.6.2
Apply the distributive property.
Step 11.2.1.1.6.3
Apply the distributive property.
Step 11.2.1.1.7
Simplify and combine like terms.
Tap for more steps...
Step 11.2.1.1.7.1
Simplify each term.
Tap for more steps...
Step 11.2.1.1.7.1.1
Multiply by .
Step 11.2.1.1.7.1.2
Multiply by .
Step 11.2.1.1.7.1.3
Multiply by .
Step 11.2.1.1.7.1.4
Multiply .
Tap for more steps...
Step 11.2.1.1.7.1.4.1
Multiply by .
Step 11.2.1.1.7.1.4.2
Raise to the power of .
Step 11.2.1.1.7.1.4.3
Raise to the power of .
Step 11.2.1.1.7.1.4.4
Use the power rule to combine exponents.
Step 11.2.1.1.7.1.4.5
Add and .
Step 11.2.1.1.7.1.4.6
Raise to the power of .
Step 11.2.1.1.7.1.4.7
Raise to the power of .
Step 11.2.1.1.7.1.4.8
Use the power rule to combine exponents.
Step 11.2.1.1.7.1.4.9
Add and .
Step 11.2.1.1.7.1.5
Rewrite as .
Step 11.2.1.1.7.1.6
Multiply by .
Step 11.2.1.1.7.1.7
Rewrite as .
Tap for more steps...
Step 11.2.1.1.7.1.7.1
Use to rewrite as .
Step 11.2.1.1.7.1.7.2
Apply the power rule and multiply exponents, .
Step 11.2.1.1.7.1.7.3
Combine and .
Step 11.2.1.1.7.1.7.4
Cancel the common factor of .
Tap for more steps...
Step 11.2.1.1.7.1.7.4.1
Cancel the common factor.
Step 11.2.1.1.7.1.7.4.2
Rewrite the expression.
Step 11.2.1.1.7.1.7.5
Evaluate the exponent.
Step 11.2.1.1.7.1.8
Multiply by .
Step 11.2.1.1.7.2
Subtract from .
Step 11.2.1.1.7.3
Subtract from .
Step 11.2.1.1.8
Reorder and .
Step 11.2.1.1.9
Cancel the common factor of and .
Tap for more steps...
Step 11.2.1.1.9.1
Factor out of .
Step 11.2.1.1.9.2
Factor out of .
Step 11.2.1.1.9.3
Factor out of .
Step 11.2.1.1.9.4
Cancel the common factors.
Tap for more steps...
Step 11.2.1.1.9.4.1
Factor out of .
Step 11.2.1.1.9.4.2
Cancel the common factor.
Step 11.2.1.1.9.4.3
Rewrite the expression.
Step 11.2.1.1.10
Multiply by .
Step 11.2.1.2
Multiply the numerator by the reciprocal of the denominator.
Step 11.2.1.3
Multiply .
Tap for more steps...
Step 11.2.1.3.1
Multiply by .
Step 11.2.1.3.2
Multiply by .
Step 11.2.1.4
Cancel the common factor of and .
Tap for more steps...
Step 11.2.1.4.1
Factor out of .
Step 11.2.1.4.2
Factor out of .
Step 11.2.1.4.3
Factor out of .
Step 11.2.1.4.4
Cancel the common factors.
Tap for more steps...
Step 11.2.1.4.4.1
Factor out of .
Step 11.2.1.4.4.2
Cancel the common factor.
Step 11.2.1.4.4.3
Rewrite the expression.
Step 11.2.1.5
Rewrite as .
Step 11.2.1.6
Factor out of .
Step 11.2.1.7
Factor out of .
Step 11.2.1.8
Move the negative in front of the fraction.
Step 12
Replace all occurrences of with in each equation.
Tap for more steps...
Step 12.1
Replace all occurrences of in with .
Step 12.2
Simplify the right side.
Tap for more steps...
Step 12.2.1
Simplify .
Tap for more steps...
Step 12.2.1.1
Simplify the numerator.
Tap for more steps...
Step 12.2.1.1.1
Apply the product rule to .
Step 12.2.1.1.2
Raise to the power of .
Step 12.2.1.1.3
Apply the product rule to .
Step 12.2.1.1.4
Raise to the power of .
Step 12.2.1.1.5
Rewrite as .
Step 12.2.1.1.6
Expand using the FOIL Method.
Tap for more steps...
Step 12.2.1.1.6.1
Apply the distributive property.
Step 12.2.1.1.6.2
Apply the distributive property.
Step 12.2.1.1.6.3
Apply the distributive property.
Step 12.2.1.1.7
Simplify and combine like terms.
Tap for more steps...
Step 12.2.1.1.7.1
Simplify each term.
Tap for more steps...
Step 12.2.1.1.7.1.1
Multiply by .
Step 12.2.1.1.7.1.2
Multiply by .
Step 12.2.1.1.7.1.3
Multiply by .
Step 12.2.1.1.7.1.4
Multiply .
Tap for more steps...
Step 12.2.1.1.7.1.4.1
Multiply by .
Step 12.2.1.1.7.1.4.2
Raise to the power of .
Step 12.2.1.1.7.1.4.3
Raise to the power of .
Step 12.2.1.1.7.1.4.4
Use the power rule to combine exponents.
Step 12.2.1.1.7.1.4.5
Add and .
Step 12.2.1.1.7.1.4.6
Raise to the power of .
Step 12.2.1.1.7.1.4.7
Raise to the power of .
Step 12.2.1.1.7.1.4.8
Use the power rule to combine exponents.
Step 12.2.1.1.7.1.4.9
Add and .
Step 12.2.1.1.7.1.5
Rewrite as .
Step 12.2.1.1.7.1.6
Multiply by .
Step 12.2.1.1.7.1.7
Rewrite as .
Tap for more steps...
Step 12.2.1.1.7.1.7.1
Use to rewrite as .
Step 12.2.1.1.7.1.7.2
Apply the power rule and multiply exponents, .
Step 12.2.1.1.7.1.7.3
Combine and .
Step 12.2.1.1.7.1.7.4
Cancel the common factor of .
Tap for more steps...
Step 12.2.1.1.7.1.7.4.1
Cancel the common factor.
Step 12.2.1.1.7.1.7.4.2
Rewrite the expression.
Step 12.2.1.1.7.1.7.5
Evaluate the exponent.
Step 12.2.1.1.7.1.8
Multiply by .
Step 12.2.1.1.7.2
Subtract from .
Step 12.2.1.1.7.3
Add and .
Step 12.2.1.1.8
Reorder and .
Step 12.2.1.1.9
Cancel the common factor of and .
Tap for more steps...
Step 12.2.1.1.9.1
Factor out of .
Step 12.2.1.1.9.2
Factor out of .
Step 12.2.1.1.9.3
Factor out of .
Step 12.2.1.1.9.4
Cancel the common factors.
Tap for more steps...
Step 12.2.1.1.9.4.1
Factor out of .
Step 12.2.1.1.9.4.2
Cancel the common factor.
Step 12.2.1.1.9.4.3
Rewrite the expression.
Step 12.2.1.1.10
Multiply by .
Step 12.2.1.2
Multiply the numerator by the reciprocal of the denominator.
Step 12.2.1.3
Multiply .
Tap for more steps...
Step 12.2.1.3.1
Multiply by .
Step 12.2.1.3.2
Multiply by .
Step 12.2.1.4
Cancel the common factor of and .
Tap for more steps...
Step 12.2.1.4.1
Factor out of .
Step 12.2.1.4.2
Factor out of .
Step 12.2.1.4.3
Factor out of .
Step 12.2.1.4.4
Cancel the common factors.
Tap for more steps...
Step 12.2.1.4.4.1
Factor out of .
Step 12.2.1.4.4.2
Cancel the common factor.
Step 12.2.1.4.4.3
Rewrite the expression.
Step 12.2.1.5
Rewrite as .
Step 12.2.1.6
Factor out of .
Step 12.2.1.7
Factor out of .
Step 12.2.1.8
Move the negative in front of the fraction.
Step 13
List all of the solutions.
Step 14