Calculus Examples

Find the Inflection Points g(x)=2x^4+12x^2-10
Step 1
Find the second derivative.
Tap for more steps...
Step 1.1
Find the first derivative.
Tap for more steps...
Step 1.1.1
By the Sum Rule, the derivative of with respect to is .
Step 1.1.2
Evaluate .
Tap for more steps...
Step 1.1.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.2.2
Differentiate using the Power Rule which states that is where .
Step 1.1.2.3
Multiply by .
Step 1.1.3
Evaluate .
Tap for more steps...
Step 1.1.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.3.2
Differentiate using the Power Rule which states that is where .
Step 1.1.3.3
Multiply by .
Step 1.1.4
Differentiate using the Constant Rule.
Tap for more steps...
Step 1.1.4.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.4.2
Add and .
Step 1.2
Find the second derivative.
Tap for more steps...
Step 1.2.1
By the Sum Rule, the derivative of with respect to is .
Step 1.2.2
Evaluate .
Tap for more steps...
Step 1.2.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.2.2.2
Differentiate using the Power Rule which states that is where .
Step 1.2.2.3
Multiply by .
Step 1.2.3
Evaluate .
Tap for more steps...
Step 1.2.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.2.3.2
Differentiate using the Power Rule which states that is where .
Step 1.2.3.3
Multiply by .
Step 1.3
The second derivative of with respect to is .
Step 2
Set the second derivative equal to then solve the equation .
Tap for more steps...
Step 2.1
Set the second derivative equal to .
Step 2.2
Subtract from both sides of the equation.
Step 2.3
Divide each term in by and simplify.
Tap for more steps...
Step 2.3.1
Divide each term in by .
Step 2.3.2
Simplify the left side.
Tap for more steps...
Step 2.3.2.1
Cancel the common factor of .
Tap for more steps...
Step 2.3.2.1.1
Cancel the common factor.
Step 2.3.2.1.2
Divide by .
Step 2.3.3
Simplify the right side.
Tap for more steps...
Step 2.3.3.1
Divide by .
Step 2.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 2.5
Rewrite as .
Step 2.6
The complete solution is the result of both the positive and negative portions of the solution.
Tap for more steps...
Step 2.6.1
First, use the positive value of the to find the first solution.
Step 2.6.2
Next, use the negative value of the to find the second solution.
Step 2.6.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 3
No values found that can make the second derivative equal to .
No Inflection Points