Enter a problem...
Calculus Examples
Step 1
Write as a function.
Step 2
Step 2.1
Find the second derivative.
Step 2.1.1
Find the first derivative.
Step 2.1.1.1
By the Sum Rule, the derivative of with respect to is .
Step 2.1.1.2
Evaluate .
Step 2.1.1.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.1.1.2.2
Differentiate using the Power Rule which states that is where .
Step 2.1.1.2.3
Multiply by .
Step 2.1.1.3
Evaluate .
Step 2.1.1.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.1.1.3.2
The derivative of with respect to is .
Step 2.1.1.4
Reorder terms.
Step 2.1.2
Find the second derivative.
Step 2.1.2.1
By the Sum Rule, the derivative of with respect to is .
Step 2.1.2.2
Evaluate .
Step 2.1.2.2.1
Differentiate using the Product Rule which states that is where and .
Step 2.1.2.2.2
Rewrite as .
Step 2.1.2.2.3
Differentiate using the Power Rule which states that is where .
Step 2.1.2.2.4
Since is constant with respect to , the derivative of with respect to is .
Step 2.1.2.2.5
Multiply by .
Step 2.1.2.2.6
Multiply by .
Step 2.1.2.2.7
Multiply by .
Step 2.1.2.2.8
Add and .
Step 2.1.2.3
Since is constant with respect to , the derivative of with respect to is .
Step 2.1.2.4
Simplify.
Step 2.1.2.4.1
Rewrite the expression using the negative exponent rule .
Step 2.1.2.4.2
Add and .
Step 2.1.3
The second derivative of with respect to is .
Step 2.2
Set the second derivative equal to then solve the equation .
Step 2.2.1
Set the second derivative equal to .
Step 2.2.2
Set the numerator equal to zero.
Step 2.2.3
Since , there are no solutions.
No solution
No solution
No solution
Step 3
Step 3.1
Set the argument in greater than to find where the expression is defined.
Step 3.2
The domain is all values of that make the expression defined.
Interval Notation:
Set-Builder Notation:
Interval Notation:
Set-Builder Notation:
Step 4
Create intervals around the -values where the second derivative is zero or undefined.
Step 5
Step 5.1
Replace the variable with in the expression.
Step 5.2
Simplify the result.
Step 5.2.1
Raise to the power of .
Step 5.2.2
The final answer is .
Step 5.3
The graph is concave up on the interval because is positive.
Concave up on since is positive
Concave up on since is positive
Step 6