Calculus Examples

Find the Critical Points x^2(x-2)^2(x-1)^2
Step 1
Find the first derivative.
Tap for more steps...
Step 1.1
Find the first derivative.
Tap for more steps...
Step 1.1.1
Rewrite as .
Step 1.1.2
Expand using the FOIL Method.
Tap for more steps...
Step 1.1.2.1
Apply the distributive property.
Step 1.1.2.2
Apply the distributive property.
Step 1.1.2.3
Apply the distributive property.
Step 1.1.3
Simplify and combine like terms.
Tap for more steps...
Step 1.1.3.1
Simplify each term.
Tap for more steps...
Step 1.1.3.1.1
Multiply by .
Step 1.1.3.1.2
Move to the left of .
Step 1.1.3.1.3
Multiply by .
Step 1.1.3.2
Subtract from .
Step 1.1.4
Rewrite as .
Step 1.1.5
Expand using the FOIL Method.
Tap for more steps...
Step 1.1.5.1
Apply the distributive property.
Step 1.1.5.2
Apply the distributive property.
Step 1.1.5.3
Apply the distributive property.
Step 1.1.6
Simplify and combine like terms.
Tap for more steps...
Step 1.1.6.1
Simplify each term.
Tap for more steps...
Step 1.1.6.1.1
Multiply by .
Step 1.1.6.1.2
Move to the left of .
Step 1.1.6.1.3
Rewrite as .
Step 1.1.6.1.4
Rewrite as .
Step 1.1.6.1.5
Multiply by .
Step 1.1.6.2
Subtract from .
Step 1.1.7
Differentiate using the Product Rule which states that is where and .
Step 1.1.8
Differentiate.
Tap for more steps...
Step 1.1.8.1
By the Sum Rule, the derivative of with respect to is .
Step 1.1.8.2
Differentiate using the Power Rule which states that is where .
Step 1.1.8.3
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.8.4
Differentiate using the Power Rule which states that is where .
Step 1.1.8.5
Multiply by .
Step 1.1.8.6
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.8.7
Add and .
Step 1.1.9
Differentiate using the Product Rule which states that is where and .
Step 1.1.10
Differentiate.
Tap for more steps...
Step 1.1.10.1
By the Sum Rule, the derivative of with respect to is .
Step 1.1.10.2
Differentiate using the Power Rule which states that is where .
Step 1.1.10.3
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.10.4
Differentiate using the Power Rule which states that is where .
Step 1.1.10.5
Multiply by .
Step 1.1.10.6
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.10.7
Add and .
Step 1.1.10.8
Differentiate using the Power Rule which states that is where .
Step 1.1.10.9
Move to the left of .
Step 1.1.11
Simplify.
Tap for more steps...
Step 1.1.11.1
Apply the distributive property.
Step 1.1.11.2
Apply the distributive property.
Step 1.1.11.3
Apply the distributive property.
Step 1.1.11.4
Apply the distributive property.
Step 1.1.11.5
Multiply by by adding the exponents.
Tap for more steps...
Step 1.1.11.5.1
Use the power rule to combine exponents.
Step 1.1.11.5.2
Add and .
Step 1.1.11.6
Multiply by by adding the exponents.
Tap for more steps...
Step 1.1.11.6.1
Move .
Step 1.1.11.6.2
Multiply by .
Tap for more steps...
Step 1.1.11.6.2.1
Raise to the power of .
Step 1.1.11.6.2.2
Use the power rule to combine exponents.
Step 1.1.11.6.3
Add and .
Step 1.1.11.7
Move to the left of .
Step 1.1.11.8
Move to the left of .
Step 1.1.11.9
Multiply by by adding the exponents.
Tap for more steps...
Step 1.1.11.9.1
Move .
Step 1.1.11.9.2
Multiply by .
Tap for more steps...
Step 1.1.11.9.2.1
Raise to the power of .
Step 1.1.11.9.2.2
Use the power rule to combine exponents.
Step 1.1.11.9.3
Add and .
Step 1.1.11.10
Move to the left of .
Step 1.1.11.11
Move to the left of .
Step 1.1.11.12
Raise to the power of .
Step 1.1.11.13
Use the power rule to combine exponents.
Step 1.1.11.14
Add and .
Step 1.1.11.15
Multiply by .
Step 1.1.11.16
Raise to the power of .
Step 1.1.11.17
Raise to the power of .
Step 1.1.11.18
Use the power rule to combine exponents.
Step 1.1.11.19
Add and .
Step 1.1.11.20
Multiply by .
Step 1.1.11.21
Add and .
Step 1.1.11.22
Subtract from .
Step 1.1.11.23
Factor out of .
Tap for more steps...
Step 1.1.11.23.1
Factor out of .
Step 1.1.11.23.2
Factor out of .
Step 1.1.11.23.3
Factor out of .
Step 1.1.11.24
Multiply by .
Step 1.1.11.25
Reorder terms.
Step 1.1.11.26
Simplify each term.
Tap for more steps...
Step 1.1.11.26.1
Expand by multiplying each term in the first expression by each term in the second expression.
Step 1.1.11.26.2
Simplify each term.
Tap for more steps...
Step 1.1.11.26.2.1
Multiply by by adding the exponents.
Tap for more steps...
Step 1.1.11.26.2.1.1
Move .
Step 1.1.11.26.2.1.2
Multiply by .
Tap for more steps...
Step 1.1.11.26.2.1.2.1
Raise to the power of .
Step 1.1.11.26.2.1.2.2
Use the power rule to combine exponents.
Step 1.1.11.26.2.1.3
Add and .
Step 1.1.11.26.2.2
Rewrite using the commutative property of multiplication.
Step 1.1.11.26.2.3
Multiply by by adding the exponents.
Tap for more steps...
Step 1.1.11.26.2.3.1
Move .
Step 1.1.11.26.2.3.2
Multiply by .
Tap for more steps...
Step 1.1.11.26.2.3.2.1
Raise to the power of .
Step 1.1.11.26.2.3.2.2
Use the power rule to combine exponents.
Step 1.1.11.26.2.3.3
Add and .
Step 1.1.11.26.2.4
Multiply by .
Step 1.1.11.26.2.5
Rewrite using the commutative property of multiplication.
Step 1.1.11.26.2.6
Multiply by by adding the exponents.
Tap for more steps...
Step 1.1.11.26.2.6.1
Move .
Step 1.1.11.26.2.6.2
Multiply by .
Tap for more steps...
Step 1.1.11.26.2.6.2.1
Raise to the power of .
Step 1.1.11.26.2.6.2.2
Use the power rule to combine exponents.
Step 1.1.11.26.2.6.3
Add and .
Step 1.1.11.26.2.7
Multiply by .
Step 1.1.11.26.2.8
Multiply by .
Step 1.1.11.26.2.9
Multiply by .
Step 1.1.11.26.3
Subtract from .
Step 1.1.11.26.4
Add and .
Step 1.1.11.26.5
Expand by multiplying each term in the first expression by each term in the second expression.
Step 1.1.11.26.6
Simplify each term.
Tap for more steps...
Step 1.1.11.26.6.1
Multiply by by adding the exponents.
Tap for more steps...
Step 1.1.11.26.6.1.1
Move .
Step 1.1.11.26.6.1.2
Use the power rule to combine exponents.
Step 1.1.11.26.6.1.3
Add and .
Step 1.1.11.26.6.2
Rewrite using the commutative property of multiplication.
Step 1.1.11.26.6.3
Multiply by by adding the exponents.
Tap for more steps...
Step 1.1.11.26.6.3.1
Move .
Step 1.1.11.26.6.3.2
Multiply by .
Tap for more steps...
Step 1.1.11.26.6.3.2.1
Raise to the power of .
Step 1.1.11.26.6.3.2.2
Use the power rule to combine exponents.
Step 1.1.11.26.6.3.3
Add and .
Step 1.1.11.26.6.4
Multiply by .
Step 1.1.11.26.6.5
Multiply by .
Step 1.1.11.26.6.6
Multiply by by adding the exponents.
Tap for more steps...
Step 1.1.11.26.6.6.1
Move .
Step 1.1.11.26.6.6.2
Use the power rule to combine exponents.
Step 1.1.11.26.6.6.3
Add and .
Step 1.1.11.26.6.7
Rewrite using the commutative property of multiplication.
Step 1.1.11.26.6.8
Multiply by by adding the exponents.
Tap for more steps...
Step 1.1.11.26.6.8.1
Move .
Step 1.1.11.26.6.8.2
Multiply by .
Tap for more steps...
Step 1.1.11.26.6.8.2.1
Raise to the power of .
Step 1.1.11.26.6.8.2.2
Use the power rule to combine exponents.
Step 1.1.11.26.6.8.3
Add and .
Step 1.1.11.26.6.9
Multiply by .
Step 1.1.11.26.6.10
Multiply by .
Step 1.1.11.26.6.11
Multiply by by adding the exponents.
Tap for more steps...
Step 1.1.11.26.6.11.1
Move .
Step 1.1.11.26.6.11.2
Multiply by .
Tap for more steps...
Step 1.1.11.26.6.11.2.1
Raise to the power of .
Step 1.1.11.26.6.11.2.2
Use the power rule to combine exponents.
Step 1.1.11.26.6.11.3
Add and .
Step 1.1.11.26.6.12
Rewrite using the commutative property of multiplication.
Step 1.1.11.26.6.13
Multiply by by adding the exponents.
Tap for more steps...
Step 1.1.11.26.6.13.1
Move .
Step 1.1.11.26.6.13.2
Multiply by .
Step 1.1.11.26.6.14
Multiply by .
Step 1.1.11.26.6.15
Multiply by .
Step 1.1.11.26.7
Subtract from .
Step 1.1.11.26.8
Add and .
Step 1.1.11.26.9
Add and .
Step 1.1.11.26.10
Subtract from .
Step 1.1.11.27
Add and .
Step 1.1.11.28
Subtract from .
Step 1.1.11.29
Add and .
Step 1.1.11.30
Subtract from .
Step 1.2
The first derivative of with respect to is .
Step 2
Set the first derivative equal to then solve the equation .
Tap for more steps...
Step 2.1
Set the first derivative equal to .
Step 2.2
Factor the left side of the equation.
Tap for more steps...
Step 2.2.1
Factor out of .
Tap for more steps...
Step 2.2.1.1
Factor out of .
Step 2.2.1.2
Factor out of .
Step 2.2.1.3
Factor out of .
Step 2.2.1.4
Factor out of .
Step 2.2.1.5
Factor out of .
Step 2.2.1.6
Factor out of .
Step 2.2.1.7
Factor out of .
Step 2.2.1.8
Factor out of .
Step 2.2.1.9
Factor out of .
Step 2.2.2
Factor using the rational roots test.
Tap for more steps...
Step 2.2.2.1
If a polynomial function has integer coefficients, then every rational zero will have the form where is a factor of the constant and is a factor of the leading coefficient.
Step 2.2.2.2
Find every combination of . These are the possible roots of the polynomial function.
Step 2.2.2.3
Substitute and simplify the expression. In this case, the expression is equal to so is a root of the polynomial.
Tap for more steps...
Step 2.2.2.3.1
Substitute into the polynomial.
Step 2.2.2.3.2
Raise to the power of .
Step 2.2.2.3.3
Multiply by .
Step 2.2.2.3.4
Raise to the power of .
Step 2.2.2.3.5
Multiply by .
Step 2.2.2.3.6
Subtract from .
Step 2.2.2.3.7
Raise to the power of .
Step 2.2.2.3.8
Multiply by .
Step 2.2.2.3.9
Add and .
Step 2.2.2.3.10
Multiply by .
Step 2.2.2.3.11
Subtract from .
Step 2.2.2.3.12
Add and .
Step 2.2.2.4
Since is a known root, divide the polynomial by to find the quotient polynomial. This polynomial can then be used to find the remaining roots.
Step 2.2.2.5
Divide by .
Tap for more steps...
Step 2.2.2.5.1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .
--+-+
Step 2.2.2.5.2
Divide the highest order term in the dividend by the highest order term in divisor .
--+-+
Step 2.2.2.5.3
Multiply the new quotient term by the divisor.
--+-+
+-
Step 2.2.2.5.4
The expression needs to be subtracted from the dividend, so change all the signs in
--+-+
-+
Step 2.2.2.5.5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
--+-+
-+
-
Step 2.2.2.5.6
Pull the next terms from the original dividend down into the current dividend.
--+-+
-+
-+
Step 2.2.2.5.7
Divide the highest order term in the dividend by the highest order term in divisor .
-
--+-+
-+
-+
Step 2.2.2.5.8
Multiply the new quotient term by the divisor.
-
--+-+
-+
-+
-+
Step 2.2.2.5.9
The expression needs to be subtracted from the dividend, so change all the signs in
-
--+-+
-+
-+
+-
Step 2.2.2.5.10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
-
--+-+
-+
-+
+-
+
Step 2.2.2.5.11
Pull the next terms from the original dividend down into the current dividend.
-
--+-+
-+
-+
+-
+-
Step 2.2.2.5.12
Divide the highest order term in the dividend by the highest order term in divisor .
-+
--+-+
-+
-+
+-
+-
Step 2.2.2.5.13
Multiply the new quotient term by the divisor.
-+
--+-+
-+
-+
+-
+-
+-
Step 2.2.2.5.14
The expression needs to be subtracted from the dividend, so change all the signs in
-+
--+-+
-+
-+
+-
+-
-+
Step 2.2.2.5.15
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
-+
--+-+
-+
-+
+-
+-
-+
-
Step 2.2.2.5.16
Pull the next terms from the original dividend down into the current dividend.
-+
--+-+
-+
-+
+-
+-
-+
-+
Step 2.2.2.5.17
Divide the highest order term in the dividend by the highest order term in divisor .
-+-
--+-+
-+
-+
+-
+-
-+
-+
Step 2.2.2.5.18
Multiply the new quotient term by the divisor.
-+-
--+-+
-+
-+
+-
+-
-+
-+
-+
Step 2.2.2.5.19
The expression needs to be subtracted from the dividend, so change all the signs in
-+-
--+-+
-+
-+
+-
+-
-+
-+
+-
Step 2.2.2.5.20
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
-+-
--+-+
-+
-+
+-
+-
-+
-+
+-
Step 2.2.2.5.21
Since the remander is , the final answer is the quotient.
Step 2.2.2.6
Write as a set of factors.
Step 2.2.3
Factor.
Tap for more steps...
Step 2.2.3.1
Factor using the rational roots test.
Tap for more steps...
Step 2.2.3.1.1
Factor using the rational roots test.
Tap for more steps...
Step 2.2.3.1.1.1
If a polynomial function has integer coefficients, then every rational zero will have the form where is a factor of the constant and is a factor of the leading coefficient.
Step 2.2.3.1.1.2
Find every combination of . These are the possible roots of the polynomial function.
Step 2.2.3.1.1.3
Substitute and simplify the expression. In this case, the expression is equal to so is a root of the polynomial.
Tap for more steps...
Step 2.2.3.1.1.3.1
Substitute into the polynomial.
Step 2.2.3.1.1.3.2
Raise to the power of .
Step 2.2.3.1.1.3.3
Multiply by .
Step 2.2.3.1.1.3.4
Raise to the power of .
Step 2.2.3.1.1.3.5
Multiply by .
Step 2.2.3.1.1.3.6
Subtract from .
Step 2.2.3.1.1.3.7
Multiply by .
Step 2.2.3.1.1.3.8
Add and .
Step 2.2.3.1.1.3.9
Subtract from .
Step 2.2.3.1.1.4
Since is a known root, divide the polynomial by to find the quotient polynomial. This polynomial can then be used to find the remaining roots.
Step 2.2.3.1.1.5
Divide by .
Tap for more steps...
Step 2.2.3.1.1.5.1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .
--+-
Step 2.2.3.1.1.5.2
Divide the highest order term in the dividend by the highest order term in divisor .
--+-
Step 2.2.3.1.1.5.3
Multiply the new quotient term by the divisor.
--+-
+-
Step 2.2.3.1.1.5.4
The expression needs to be subtracted from the dividend, so change all the signs in
--+-
-+
Step 2.2.3.1.1.5.5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
--+-
-+
-
Step 2.2.3.1.1.5.6
Pull the next terms from the original dividend down into the current dividend.
--+-
-+
-+
Step 2.2.3.1.1.5.7
Divide the highest order term in the dividend by the highest order term in divisor .
-
--+-
-+
-+
Step 2.2.3.1.1.5.8
Multiply the new quotient term by the divisor.
-
--+-
-+
-+
-+
Step 2.2.3.1.1.5.9
The expression needs to be subtracted from the dividend, so change all the signs in
-
--+-
-+
-+
+-
Step 2.2.3.1.1.5.10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
-
--+-
-+
-+
+-
+
Step 2.2.3.1.1.5.11
Pull the next terms from the original dividend down into the current dividend.
-
--+-
-+
-+
+-
+-
Step 2.2.3.1.1.5.12
Divide the highest order term in the dividend by the highest order term in divisor .
-+
--+-
-+
-+
+-
+-
Step 2.2.3.1.1.5.13
Multiply the new quotient term by the divisor.
-+
--+-
-+
-+
+-
+-
+-
Step 2.2.3.1.1.5.14
The expression needs to be subtracted from the dividend, so change all the signs in
-+
--+-
-+
-+
+-
+-
-+
Step 2.2.3.1.1.5.15
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
-+
--+-
-+
-+
+-
+-
-+
Step 2.2.3.1.1.5.16
Since the remander is , the final answer is the quotient.
Step 2.2.3.1.1.6
Write as a set of factors.
Step 2.2.3.1.2
Remove unnecessary parentheses.
Step 2.2.3.2
Remove unnecessary parentheses.
Step 2.3
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 2.4
Set equal to .
Step 2.5
Set equal to and solve for .
Tap for more steps...
Step 2.5.1
Set equal to .
Step 2.5.2
Add to both sides of the equation.
Step 2.6
Set equal to and solve for .
Tap for more steps...
Step 2.6.1
Set equal to .
Step 2.6.2
Add to both sides of the equation.
Step 2.7
Set equal to and solve for .
Tap for more steps...
Step 2.7.1
Set equal to .
Step 2.7.2
Solve for .
Tap for more steps...
Step 2.7.2.1
Use the quadratic formula to find the solutions.
Step 2.7.2.2
Substitute the values , , and into the quadratic formula and solve for .
Step 2.7.2.3
Simplify.
Tap for more steps...
Step 2.7.2.3.1
Simplify the numerator.
Tap for more steps...
Step 2.7.2.3.1.1
Raise to the power of .
Step 2.7.2.3.1.2
Multiply .
Tap for more steps...
Step 2.7.2.3.1.2.1
Multiply by .
Step 2.7.2.3.1.2.2
Multiply by .
Step 2.7.2.3.1.3
Subtract from .
Step 2.7.2.3.1.4
Rewrite as .
Tap for more steps...
Step 2.7.2.3.1.4.1
Factor out of .
Step 2.7.2.3.1.4.2
Rewrite as .
Step 2.7.2.3.1.5
Pull terms out from under the radical.
Step 2.7.2.3.2
Multiply by .
Step 2.7.2.3.3
Simplify .
Step 2.7.2.4
Simplify the expression to solve for the portion of the .
Tap for more steps...
Step 2.7.2.4.1
Simplify the numerator.
Tap for more steps...
Step 2.7.2.4.1.1
Raise to the power of .
Step 2.7.2.4.1.2
Multiply .
Tap for more steps...
Step 2.7.2.4.1.2.1
Multiply by .
Step 2.7.2.4.1.2.2
Multiply by .
Step 2.7.2.4.1.3
Subtract from .
Step 2.7.2.4.1.4
Rewrite as .
Tap for more steps...
Step 2.7.2.4.1.4.1
Factor out of .
Step 2.7.2.4.1.4.2
Rewrite as .
Step 2.7.2.4.1.5
Pull terms out from under the radical.
Step 2.7.2.4.2
Multiply by .
Step 2.7.2.4.3
Simplify .
Step 2.7.2.4.4
Change the to .
Step 2.7.2.5
Simplify the expression to solve for the portion of the .
Tap for more steps...
Step 2.7.2.5.1
Simplify the numerator.
Tap for more steps...
Step 2.7.2.5.1.1
Raise to the power of .
Step 2.7.2.5.1.2
Multiply .
Tap for more steps...
Step 2.7.2.5.1.2.1
Multiply by .
Step 2.7.2.5.1.2.2
Multiply by .
Step 2.7.2.5.1.3
Subtract from .
Step 2.7.2.5.1.4
Rewrite as .
Tap for more steps...
Step 2.7.2.5.1.4.1
Factor out of .
Step 2.7.2.5.1.4.2
Rewrite as .
Step 2.7.2.5.1.5
Pull terms out from under the radical.
Step 2.7.2.5.2
Multiply by .
Step 2.7.2.5.3
Simplify .
Step 2.7.2.5.4
Change the to .
Step 2.7.2.6
The final answer is the combination of both solutions.
Step 2.8
The final solution is all the values that make true.
Step 3
Find the values where the derivative is undefined.
Tap for more steps...
Step 3.1
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Step 4
Evaluate at each value where the derivative is or undefined.
Tap for more steps...
Step 4.1
Evaluate at .
Tap for more steps...
Step 4.1.1
Substitute for .
Step 4.1.2
Simplify.
Tap for more steps...
Step 4.1.2.1
Raising to any positive power yields .
Step 4.1.2.2
Subtract from .
Step 4.1.2.3
Raise to the power of .
Step 4.1.2.4
Multiply by .
Step 4.1.2.5
Subtract from .
Step 4.1.2.6
Raise to the power of .
Step 4.1.2.7
Multiply by .
Step 4.2
Evaluate at .
Tap for more steps...
Step 4.2.1
Substitute for .
Step 4.2.2
Simplify.
Tap for more steps...
Step 4.2.2.1
One to any power is one.
Step 4.2.2.2
Multiply by .
Step 4.2.2.3
Subtract from .
Step 4.2.2.4
Raise to the power of .
Step 4.2.2.5
Multiply by .
Step 4.2.2.6
Subtract from .
Step 4.2.2.7
Raising to any positive power yields .
Step 4.3
Evaluate at .
Tap for more steps...
Step 4.3.1
Substitute for .
Step 4.3.2
Simplify.
Tap for more steps...
Step 4.3.2.1
Raise to the power of .
Step 4.3.2.2
Subtract from .
Step 4.3.2.3
Raising to any positive power yields .
Step 4.3.2.4
Multiply by .
Step 4.3.2.5
Subtract from .
Step 4.3.2.6
One to any power is one.
Step 4.3.2.7
Multiply by .
Step 4.4
Evaluate at .
Tap for more steps...
Step 4.4.1
Substitute for .
Step 4.4.2
Simplify.
Tap for more steps...
Step 4.4.2.1
Simplify the expression.
Tap for more steps...
Step 4.4.2.1.1
Apply the product rule to .
Step 4.4.2.1.2
Raise to the power of .
Step 4.4.2.1.3
Rewrite as .
Step 4.4.2.2
Expand using the FOIL Method.
Tap for more steps...
Step 4.4.2.2.1
Apply the distributive property.
Step 4.4.2.2.2
Apply the distributive property.
Step 4.4.2.2.3
Apply the distributive property.
Step 4.4.2.3
Simplify and combine like terms.
Tap for more steps...
Step 4.4.2.3.1
Simplify each term.
Tap for more steps...
Step 4.4.2.3.1.1
Multiply by .
Step 4.4.2.3.1.2
Move to the left of .
Step 4.4.2.3.1.3
Combine using the product rule for radicals.
Step 4.4.2.3.1.4
Multiply by .
Step 4.4.2.3.1.5
Rewrite as .
Step 4.4.2.3.1.6
Pull terms out from under the radical, assuming positive real numbers.
Step 4.4.2.3.2
Add and .
Step 4.4.2.3.3
Add and .
Step 4.4.2.4
Cancel the common factor of and .
Tap for more steps...
Step 4.4.2.4.1
Factor out of .
Step 4.4.2.4.2
Factor out of .
Step 4.4.2.4.3
Factor out of .
Step 4.4.2.4.4
Cancel the common factors.
Tap for more steps...
Step 4.4.2.4.4.1
Factor out of .
Step 4.4.2.4.4.2
Cancel the common factor.
Step 4.4.2.4.4.3
Rewrite the expression.
Step 4.4.2.5
To write as a fraction with a common denominator, multiply by .
Step 4.4.2.6
Combine fractions.
Tap for more steps...
Step 4.4.2.6.1
Combine and .
Step 4.4.2.6.2
Combine the numerators over the common denominator.
Step 4.4.2.7
Simplify the numerator.
Tap for more steps...
Step 4.4.2.7.1
Multiply by .
Step 4.4.2.7.2
Subtract from .
Step 4.4.2.8
Simplify the expression.
Tap for more steps...
Step 4.4.2.8.1
Apply the product rule to .
Step 4.4.2.8.2
Raise to the power of .
Step 4.4.2.8.3
Rewrite as .
Step 4.4.2.9
Expand using the FOIL Method.
Tap for more steps...
Step 4.4.2.9.1
Apply the distributive property.
Step 4.4.2.9.2
Apply the distributive property.
Step 4.4.2.9.3
Apply the distributive property.
Step 4.4.2.10
Simplify and combine like terms.
Tap for more steps...
Step 4.4.2.10.1
Simplify each term.
Tap for more steps...
Step 4.4.2.10.1.1
Multiply by .
Step 4.4.2.10.1.2
Move to the left of .
Step 4.4.2.10.1.3
Combine using the product rule for radicals.
Step 4.4.2.10.1.4
Multiply by .
Step 4.4.2.10.1.5
Rewrite as .
Step 4.4.2.10.1.6
Pull terms out from under the radical, assuming positive real numbers.
Step 4.4.2.10.2
Add and .
Step 4.4.2.10.3
Subtract from .
Step 4.4.2.11
Cancel the common factor of and .
Tap for more steps...
Step 4.4.2.11.1
Factor out of .
Step 4.4.2.11.2
Factor out of .
Step 4.4.2.11.3
Factor out of .
Step 4.4.2.11.4
Cancel the common factors.
Tap for more steps...
Step 4.4.2.11.4.1
Factor out of .
Step 4.4.2.11.4.2
Cancel the common factor.
Step 4.4.2.11.4.3
Rewrite the expression.
Step 4.4.2.12
Multiply .
Tap for more steps...
Step 4.4.2.12.1
Multiply by .
Step 4.4.2.12.2
Multiply by .
Step 4.4.2.13
Simplify the numerator.
Tap for more steps...
Step 4.4.2.13.1
Expand using the FOIL Method.
Tap for more steps...
Step 4.4.2.13.1.1
Apply the distributive property.
Step 4.4.2.13.1.2
Apply the distributive property.
Step 4.4.2.13.1.3
Apply the distributive property.
Step 4.4.2.13.2
Simplify and combine like terms.
Tap for more steps...
Step 4.4.2.13.2.1
Simplify each term.
Tap for more steps...
Step 4.4.2.13.2.1.1
Multiply by .
Step 4.4.2.13.2.1.2
Multiply by .
Step 4.4.2.13.2.1.3
Multiply by .
Step 4.4.2.13.2.1.4
Multiply .
Tap for more steps...
Step 4.4.2.13.2.1.4.1
Multiply by .
Step 4.4.2.13.2.1.4.2
Raise to the power of .
Step 4.4.2.13.2.1.4.3
Raise to the power of .
Step 4.4.2.13.2.1.4.4
Use the power rule to combine exponents.
Step 4.4.2.13.2.1.4.5
Add and .
Step 4.4.2.13.2.1.5
Rewrite as .
Tap for more steps...
Step 4.4.2.13.2.1.5.1
Use to rewrite as .
Step 4.4.2.13.2.1.5.2
Apply the power rule and multiply exponents, .
Step 4.4.2.13.2.1.5.3
Combine and .
Step 4.4.2.13.2.1.5.4
Cancel the common factor of .
Tap for more steps...
Step 4.4.2.13.2.1.5.4.1
Cancel the common factor.
Step 4.4.2.13.2.1.5.4.2
Rewrite the expression.
Step 4.4.2.13.2.1.5.5
Evaluate the exponent.
Step 4.4.2.13.2.1.6
Multiply by .
Step 4.4.2.13.2.2
Subtract from .
Step 4.4.2.13.2.3
Add and .
Step 4.4.2.13.2.4
Add and .
Step 4.4.2.14
To write as a fraction with a common denominator, multiply by .
Step 4.4.2.15
Combine fractions.
Tap for more steps...
Step 4.4.2.15.1
Combine and .
Step 4.4.2.15.2
Combine the numerators over the common denominator.
Step 4.4.2.16
Simplify the numerator.
Tap for more steps...
Step 4.4.2.16.1
Multiply by .
Step 4.4.2.16.2
Subtract from .
Step 4.4.2.16.3
Add and .
Step 4.4.2.17
Simplify terms.
Tap for more steps...
Step 4.4.2.17.1
Apply the product rule to .
Step 4.4.2.17.2
Combine.
Step 4.4.2.17.3
Rewrite as .
Tap for more steps...
Step 4.4.2.17.3.1
Use to rewrite as .
Step 4.4.2.17.3.2
Apply the power rule and multiply exponents, .
Step 4.4.2.17.3.3
Combine and .
Step 4.4.2.17.3.4
Cancel the common factor of .
Tap for more steps...
Step 4.4.2.17.3.4.1
Cancel the common factor.
Step 4.4.2.17.3.4.2
Rewrite the expression.
Step 4.4.2.17.3.5
Evaluate the exponent.
Step 4.4.2.18
Simplify the denominator.
Tap for more steps...
Step 4.4.2.18.1
Rewrite as .
Step 4.4.2.18.2
Use the power rule to combine exponents.
Step 4.4.2.18.3
Add and .
Step 4.4.2.19
Reduce the expression by cancelling the common factors.
Tap for more steps...
Step 4.4.2.19.1
Multiply by .
Step 4.4.2.19.2
Raise to the power of .
Step 4.4.2.19.3
Cancel the common factor of and .
Tap for more steps...
Step 4.4.2.19.3.1
Factor out of .
Step 4.4.2.19.3.2
Cancel the common factors.
Tap for more steps...
Step 4.4.2.19.3.2.1
Factor out of .
Step 4.4.2.19.3.2.2
Cancel the common factor.
Step 4.4.2.19.3.2.3
Rewrite the expression.
Step 4.5
Evaluate at .
Tap for more steps...
Step 4.5.1
Substitute for .
Step 4.5.2
Simplify.
Tap for more steps...
Step 4.5.2.1
Simplify the expression.
Tap for more steps...
Step 4.5.2.1.1
Apply the product rule to .
Step 4.5.2.1.2
Raise to the power of .
Step 4.5.2.1.3
Rewrite as .
Step 4.5.2.2
Expand using the FOIL Method.
Tap for more steps...
Step 4.5.2.2.1
Apply the distributive property.
Step 4.5.2.2.2
Apply the distributive property.
Step 4.5.2.2.3
Apply the distributive property.
Step 4.5.2.3
Simplify and combine like terms.
Tap for more steps...
Step 4.5.2.3.1
Simplify each term.
Tap for more steps...
Step 4.5.2.3.1.1
Multiply by .
Step 4.5.2.3.1.2
Multiply by .
Step 4.5.2.3.1.3
Multiply by .
Step 4.5.2.3.1.4
Multiply .
Tap for more steps...
Step 4.5.2.3.1.4.1
Multiply by .
Step 4.5.2.3.1.4.2
Multiply by .
Step 4.5.2.3.1.4.3
Raise to the power of .
Step 4.5.2.3.1.4.4
Raise to the power of .
Step 4.5.2.3.1.4.5
Use the power rule to combine exponents.
Step 4.5.2.3.1.4.6
Add and .
Step 4.5.2.3.1.5
Rewrite as .
Tap for more steps...
Step 4.5.2.3.1.5.1
Use to rewrite as .
Step 4.5.2.3.1.5.2
Apply the power rule and multiply exponents, .
Step 4.5.2.3.1.5.3
Combine and .
Step 4.5.2.3.1.5.4
Cancel the common factor of .
Tap for more steps...
Step 4.5.2.3.1.5.4.1
Cancel the common factor.
Step 4.5.2.3.1.5.4.2
Rewrite the expression.
Step 4.5.2.3.1.5.5
Evaluate the exponent.
Step 4.5.2.3.2
Add and .
Step 4.5.2.3.3
Subtract from .
Step 4.5.2.4
Cancel the common factor of and .
Tap for more steps...
Step 4.5.2.4.1
Factor out of .
Step 4.5.2.4.2
Factor out of .
Step 4.5.2.4.3
Factor out of .
Step 4.5.2.4.4
Cancel the common factors.
Tap for more steps...
Step 4.5.2.4.4.1
Factor out of .
Step 4.5.2.4.4.2
Cancel the common factor.
Step 4.5.2.4.4.3
Rewrite the expression.
Step 4.5.2.5
To write as a fraction with a common denominator, multiply by .
Step 4.5.2.6
Combine fractions.
Tap for more steps...
Step 4.5.2.6.1
Combine and .
Step 4.5.2.6.2
Combine the numerators over the common denominator.
Step 4.5.2.7
Simplify the numerator.
Tap for more steps...
Step 4.5.2.7.1
Multiply by .
Step 4.5.2.7.2
Subtract from .
Step 4.5.2.8
Simplify the expression.
Tap for more steps...
Step 4.5.2.8.1
Apply the product rule to .
Step 4.5.2.8.2
Raise to the power of .
Step 4.5.2.8.3
Rewrite as .
Step 4.5.2.9
Expand using the FOIL Method.
Tap for more steps...
Step 4.5.2.9.1
Apply the distributive property.
Step 4.5.2.9.2
Apply the distributive property.
Step 4.5.2.9.3
Apply the distributive property.
Step 4.5.2.10
Simplify and combine like terms.
Tap for more steps...
Step 4.5.2.10.1
Simplify each term.
Tap for more steps...
Step 4.5.2.10.1.1
Multiply by .
Step 4.5.2.10.1.2
Multiply by .
Step 4.5.2.10.1.3
Multiply by .
Step 4.5.2.10.1.4
Multiply .
Tap for more steps...
Step 4.5.2.10.1.4.1
Multiply by .
Step 4.5.2.10.1.4.2
Multiply by .
Step 4.5.2.10.1.4.3
Raise to the power of .
Step 4.5.2.10.1.4.4
Raise to the power of .
Step 4.5.2.10.1.4.5
Use the power rule to combine exponents.
Step 4.5.2.10.1.4.6
Add and .
Step 4.5.2.10.1.5
Rewrite as .
Tap for more steps...
Step 4.5.2.10.1.5.1
Use to rewrite as .
Step 4.5.2.10.1.5.2
Apply the power rule and multiply exponents, .
Step 4.5.2.10.1.5.3
Combine and .
Step 4.5.2.10.1.5.4
Cancel the common factor of .
Tap for more steps...
Step 4.5.2.10.1.5.4.1
Cancel the common factor.
Step 4.5.2.10.1.5.4.2
Rewrite the expression.
Step 4.5.2.10.1.5.5
Evaluate the exponent.
Step 4.5.2.10.2
Add and .
Step 4.5.2.10.3
Add and .
Step 4.5.2.11
Cancel the common factor of and .
Tap for more steps...
Step 4.5.2.11.1
Factor out of .
Step 4.5.2.11.2
Factor out of .
Step 4.5.2.11.3
Factor out of .
Step 4.5.2.11.4
Cancel the common factors.
Tap for more steps...
Step 4.5.2.11.4.1
Factor out of .
Step 4.5.2.11.4.2
Cancel the common factor.
Step 4.5.2.11.4.3
Rewrite the expression.
Step 4.5.2.12
Multiply .
Tap for more steps...
Step 4.5.2.12.1
Multiply by .
Step 4.5.2.12.2
Multiply by .
Step 4.5.2.13
Simplify the numerator.
Tap for more steps...
Step 4.5.2.13.1
Expand using the FOIL Method.
Tap for more steps...
Step 4.5.2.13.1.1
Apply the distributive property.
Step 4.5.2.13.1.2
Apply the distributive property.
Step 4.5.2.13.1.3
Apply the distributive property.
Step 4.5.2.13.2
Simplify and combine like terms.
Tap for more steps...
Step 4.5.2.13.2.1
Simplify each term.
Tap for more steps...
Step 4.5.2.13.2.1.1
Multiply by .
Step 4.5.2.13.2.1.2
Multiply by .
Step 4.5.2.13.2.1.3
Multiply by .
Step 4.5.2.13.2.1.4
Multiply .
Tap for more steps...
Step 4.5.2.13.2.1.4.1
Multiply by .
Step 4.5.2.13.2.1.4.2
Raise to the power of .
Step 4.5.2.13.2.1.4.3
Raise to the power of .
Step 4.5.2.13.2.1.4.4
Use the power rule to combine exponents.
Step 4.5.2.13.2.1.4.5
Add and .
Step 4.5.2.13.2.1.5
Rewrite as .
Tap for more steps...
Step 4.5.2.13.2.1.5.1
Use to rewrite as .
Step 4.5.2.13.2.1.5.2
Apply the power rule and multiply exponents, .
Step 4.5.2.13.2.1.5.3
Combine and .
Step 4.5.2.13.2.1.5.4
Cancel the common factor of .
Tap for more steps...
Step 4.5.2.13.2.1.5.4.1
Cancel the common factor.
Step 4.5.2.13.2.1.5.4.2
Rewrite the expression.
Step 4.5.2.13.2.1.5.5
Evaluate the exponent.
Step 4.5.2.13.2.1.6
Multiply by .
Step 4.5.2.13.2.2
Subtract from .
Step 4.5.2.13.2.3
Subtract from .
Step 4.5.2.13.2.4
Add and .
Step 4.5.2.14
To write as a fraction with a common denominator, multiply by .
Step 4.5.2.15
Combine fractions.
Tap for more steps...
Step 4.5.2.15.1
Combine and .
Step 4.5.2.15.2
Combine the numerators over the common denominator.
Step 4.5.2.16
Simplify the numerator.
Tap for more steps...
Step 4.5.2.16.1
Multiply by .
Step 4.5.2.16.2
Subtract from .
Step 4.5.2.16.3
Subtract from .
Step 4.5.2.17
Move the negative in front of the fraction.
Step 4.5.2.18
Use the power rule to distribute the exponent.
Tap for more steps...
Step 4.5.2.18.1
Apply the product rule to .
Step 4.5.2.18.2
Apply the product rule to .
Step 4.5.2.19
Simplify terms.
Tap for more steps...
Step 4.5.2.19.1
Raise to the power of .
Step 4.5.2.19.2
Multiply by .
Step 4.5.2.19.3
Combine.
Step 4.5.2.19.4
Rewrite as .
Tap for more steps...
Step 4.5.2.19.4.1
Use to rewrite as .
Step 4.5.2.19.4.2
Apply the power rule and multiply exponents, .
Step 4.5.2.19.4.3
Combine and .
Step 4.5.2.19.4.4
Cancel the common factor of .
Tap for more steps...
Step 4.5.2.19.4.4.1
Cancel the common factor.
Step 4.5.2.19.4.4.2
Rewrite the expression.
Step 4.5.2.19.4.5
Evaluate the exponent.
Step 4.5.2.20
Simplify the denominator.
Tap for more steps...
Step 4.5.2.20.1
Rewrite as .
Step 4.5.2.20.2
Use the power rule to combine exponents.
Step 4.5.2.20.3
Add and .
Step 4.5.2.21
Reduce the expression by cancelling the common factors.
Tap for more steps...
Step 4.5.2.21.1
Multiply by .
Step 4.5.2.21.2
Raise to the power of .
Step 4.5.2.21.3
Cancel the common factor of and .
Tap for more steps...
Step 4.5.2.21.3.1
Factor out of .
Step 4.5.2.21.3.2
Cancel the common factors.
Tap for more steps...
Step 4.5.2.21.3.2.1
Factor out of .
Step 4.5.2.21.3.2.2
Cancel the common factor.
Step 4.5.2.21.3.2.3
Rewrite the expression.
Step 4.6
List all of the points.
Step 5