Enter a problem...
Calculus Examples
,
Step 1
Step 1.1
Eliminate the equal sides of each equation and combine.
Step 1.2
Solve for .
Step 1.2.1
Move all terms containing to the left side of the equation.
Step 1.2.1.1
Subtract from both sides of the equation.
Step 1.2.1.2
Subtract from .
Step 1.2.2
Divide each term in by and simplify.
Step 1.2.2.1
Divide each term in by .
Step 1.2.2.2
Simplify the left side.
Step 1.2.2.2.1
Cancel the common factor of .
Step 1.2.2.2.1.1
Cancel the common factor.
Step 1.2.2.2.1.2
Divide by .
Step 1.2.2.3
Simplify the right side.
Step 1.2.2.3.1
Cancel the common factor of and .
Step 1.2.2.3.1.1
Factor out of .
Step 1.2.2.3.1.2
Cancel the common factors.
Step 1.2.2.3.1.2.1
Factor out of .
Step 1.2.2.3.1.2.2
Cancel the common factor.
Step 1.2.2.3.1.2.3
Rewrite the expression.
Step 1.2.3
Take the inverse cosine of both sides of the equation to extract from inside the cosine.
Step 1.2.4
Simplify the right side.
Step 1.2.4.1
The exact value of is .
Step 1.2.5
The cosine function is positive in the first and fourth quadrants. To find the second solution, subtract the reference angle from to find the solution in the fourth quadrant.
Step 1.2.6
Simplify .
Step 1.2.6.1
To write as a fraction with a common denominator, multiply by .
Step 1.2.6.2
Combine fractions.
Step 1.2.6.2.1
Combine and .
Step 1.2.6.2.2
Combine the numerators over the common denominator.
Step 1.2.6.3
Simplify the numerator.
Step 1.2.6.3.1
Multiply by .
Step 1.2.6.3.2
Subtract from .
Step 1.2.7
Find the period of .
Step 1.2.7.1
The period of the function can be calculated using .
Step 1.2.7.2
Replace with in the formula for period.
Step 1.2.7.3
The absolute value is the distance between a number and zero. The distance between and is .
Step 1.2.7.4
Divide by .
Step 1.2.8
The period of the function is so values will repeat every radians in both directions.
, for any integer
, for any integer
Step 1.3
Evaluate when .
Step 1.3.1
Substitute for .
Step 1.3.2
Substitute for in and solve for .
Step 1.3.2.1
Remove parentheses.
Step 1.3.2.2
Reorder and .
Step 1.4
Evaluate when .
Step 1.4.1
Substitute for .
Step 1.4.2
Substitute for in and solve for .
Step 1.4.2.1
Remove parentheses.
Step 1.4.2.2
Reorder and .
Step 1.5
The solution of the system of equations is all the values that make the system true.
Step 1.6
List all of the solutions.
Step 2
The area between the given curves is unbounded.
Unbounded area
Step 3