Calculus Examples

Find the Horizontal Tangent Line 4x+5y^2-y=3
Step 1
Solve the equation as in terms of .
Tap for more steps...
Step 1.1
Subtract from both sides of the equation.
Step 1.2
Use the quadratic formula to find the solutions.
Step 1.3
Substitute the values , , and into the quadratic formula and solve for .
Step 1.4
Simplify.
Tap for more steps...
Step 1.4.1
Simplify the numerator.
Tap for more steps...
Step 1.4.1.1
Raise to the power of .
Step 1.4.1.2
Multiply by .
Step 1.4.1.3
Apply the distributive property.
Step 1.4.1.4
Multiply by .
Step 1.4.1.5
Multiply by .
Step 1.4.1.6
Add and .
Step 1.4.2
Multiply by .
Step 1.5
Simplify the expression to solve for the portion of the .
Tap for more steps...
Step 1.5.1
Simplify the numerator.
Tap for more steps...
Step 1.5.1.1
Raise to the power of .
Step 1.5.1.2
Multiply by .
Step 1.5.1.3
Apply the distributive property.
Step 1.5.1.4
Multiply by .
Step 1.5.1.5
Multiply by .
Step 1.5.1.6
Add and .
Step 1.5.2
Multiply by .
Step 1.5.3
Change the to .
Step 1.6
Simplify the expression to solve for the portion of the .
Tap for more steps...
Step 1.6.1
Simplify the numerator.
Tap for more steps...
Step 1.6.1.1
Raise to the power of .
Step 1.6.1.2
Multiply by .
Step 1.6.1.3
Apply the distributive property.
Step 1.6.1.4
Multiply by .
Step 1.6.1.5
Multiply by .
Step 1.6.1.6
Add and .
Step 1.6.2
Multiply by .
Step 1.6.3
Change the to .
Step 1.7
The final answer is the combination of both solutions.
Step 2
Set each solution of as a function of .
Step 3
Because the variable in the equation has a degree greater than , use implicit differentiation to solve for the derivative .
Tap for more steps...
Step 3.1
Differentiate both sides of the equation.
Step 3.2
Differentiate the left side of the equation.
Tap for more steps...
Step 3.2.1
By the Sum Rule, the derivative of with respect to is .
Step 3.2.2
Evaluate .
Tap for more steps...
Step 3.2.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 3.2.2.2
Differentiate using the Power Rule which states that is where .
Step 3.2.2.3
Multiply by .
Step 3.2.3
Evaluate .
Tap for more steps...
Step 3.2.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 3.2.3.2
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 3.2.3.2.1
To apply the Chain Rule, set as .
Step 3.2.3.2.2
Differentiate using the Power Rule which states that is where .
Step 3.2.3.2.3
Replace all occurrences of with .
Step 3.2.3.3
Rewrite as .
Step 3.2.3.4
Multiply by .
Step 3.2.4
Evaluate .
Tap for more steps...
Step 3.2.4.1
Since is constant with respect to , the derivative of with respect to is .
Step 3.2.4.2
Rewrite as .
Step 3.2.5
Reorder terms.
Step 3.3
Since is constant with respect to , the derivative of with respect to is .
Step 3.4
Reform the equation by setting the left side equal to the right side.
Step 3.5
Solve for .
Tap for more steps...
Step 3.5.1
Subtract from both sides of the equation.
Step 3.5.2
Factor out of .
Tap for more steps...
Step 3.5.2.1
Factor out of .
Step 3.5.2.2
Factor out of .
Step 3.5.2.3
Factor out of .
Step 3.5.3
Divide each term in by and simplify.
Tap for more steps...
Step 3.5.3.1
Divide each term in by .
Step 3.5.3.2
Simplify the left side.
Tap for more steps...
Step 3.5.3.2.1
Cancel the common factor of .
Tap for more steps...
Step 3.5.3.2.1.1
Cancel the common factor.
Step 3.5.3.2.1.2
Divide by .
Step 3.5.3.3
Simplify the right side.
Tap for more steps...
Step 3.5.3.3.1
Move the negative in front of the fraction.
Step 3.6
Replace with .
Step 4
Set the derivative equal to then solve the equation .
Tap for more steps...
Step 4.1
Set the numerator equal to zero.
Step 4.2
Since , there are no solutions.
No solution
No solution
Step 5
There are no solution found by setting the derivative equal to , so there are no horizontal tangent lines.
No horizontal tangent lines found
Step 6