Enter a problem...
Calculus Examples
,
Step 1
Step 1.1
Differentiate both sides of the equation.
Step 1.2
Differentiate the left side of the equation.
Step 1.2.1
Differentiate.
Step 1.2.1.1
By the Sum Rule, the derivative of with respect to is .
Step 1.2.1.2
Differentiate using the Power Rule which states that is where .
Step 1.2.2
Evaluate .
Step 1.2.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.2.2.2
Differentiate using the chain rule, which states that is where and .
Step 1.2.2.2.1
To apply the Chain Rule, set as .
Step 1.2.2.2.2
Differentiate using the Power Rule which states that is where .
Step 1.2.2.2.3
Replace all occurrences of with .
Step 1.2.2.3
Rewrite as .
Step 1.2.2.4
Multiply by .
Step 1.2.3
Reorder terms.
Step 1.3
Since is constant with respect to , the derivative of with respect to is .
Step 1.4
Reform the equation by setting the left side equal to the right side.
Step 1.5
Solve for .
Step 1.5.1
Subtract from both sides of the equation.
Step 1.5.2
Divide each term in by and simplify.
Step 1.5.2.1
Divide each term in by .
Step 1.5.2.2
Simplify the left side.
Step 1.5.2.2.1
Cancel the common factor of .
Step 1.5.2.2.1.1
Cancel the common factor.
Step 1.5.2.2.1.2
Rewrite the expression.
Step 1.5.2.2.2
Cancel the common factor of .
Step 1.5.2.2.2.1
Cancel the common factor.
Step 1.5.2.2.2.2
Divide by .
Step 1.5.2.3
Simplify the right side.
Step 1.5.2.3.1
Cancel the common factor of .
Step 1.5.2.3.1.1
Cancel the common factor.
Step 1.5.2.3.1.2
Rewrite the expression.
Step 1.6
Replace with .
Step 1.7
Evaluate at and .
Step 1.7.1
Replace the variable with in the expression.
Step 1.7.2
Replace the variable with in the expression.
Step 1.7.3
The expression contains a division by . The expression is undefined.
Undefined
Undefined
Undefined
Step 2
The slope of the line is undefined, which means that it is perpendicular to the x-axis at .
Step 3