Enter a problem...
Calculus Examples
Step 1
Set the radicand in greater than or equal to to find where the expression is defined.
Step 2
Step 2.1
Add to both sides of the inequality.
Step 2.2
Use each root to create test intervals.
Step 2.3
Compare the intervals to determine which ones satisfy the original inequality.
Step 2.4
Since there are no numbers that fall within the interval, this inequality has no solution.
No solution
No solution
Step 3
Set the denominator in equal to to find where the expression is undefined.
Step 4
Step 4.1
To remove the radical on the left side of the equation, square both sides of the equation.
Step 4.2
Simplify each side of the equation.
Step 4.2.1
Use to rewrite as .
Step 4.2.2
Simplify the left side.
Step 4.2.2.1
Simplify .
Step 4.2.2.1.1
Multiply the exponents in .
Step 4.2.2.1.1.1
Apply the power rule and multiply exponents, .
Step 4.2.2.1.1.2
Cancel the common factor of .
Step 4.2.2.1.1.2.1
Cancel the common factor.
Step 4.2.2.1.1.2.2
Rewrite the expression.
Step 4.2.2.1.2
Simplify.
Step 4.2.3
Simplify the right side.
Step 4.2.3.1
Raising to any positive power yields .
Step 4.3
Add to both sides of the equation.
Step 5
The domain is all real numbers.
Interval Notation:
Set-Builder Notation:
Step 6