Enter a problem...
Calculus Examples
Step 1
Write as an equation.
Step 2
Interchange the variables.
Step 3
Step 3.1
Rewrite the equation as .
Step 3.2
Add to both sides of the equation.
Step 3.3
To remove the radical on the left side of the equation, cube both sides of the equation.
Step 3.4
Simplify each side of the equation.
Step 3.4.1
Use to rewrite as .
Step 3.4.2
Simplify the left side.
Step 3.4.2.1
Simplify .
Step 3.4.2.1.1
Multiply the exponents in .
Step 3.4.2.1.1.1
Apply the power rule and multiply exponents, .
Step 3.4.2.1.1.2
Cancel the common factor of .
Step 3.4.2.1.1.2.1
Cancel the common factor.
Step 3.4.2.1.1.2.2
Rewrite the expression.
Step 3.4.2.1.2
Simplify.
Step 3.4.3
Simplify the right side.
Step 3.4.3.1
Simplify .
Step 3.4.3.1.1
Use the Binomial Theorem.
Step 3.4.3.1.2
Simplify each term.
Step 3.4.3.1.2.1
Multiply by .
Step 3.4.3.1.2.2
Raise to the power of .
Step 3.4.3.1.2.3
Multiply by .
Step 3.4.3.1.2.4
Raise to the power of .
Step 3.5
Move all terms not containing to the right side of the equation.
Step 3.5.1
Subtract from both sides of the equation.
Step 3.5.2
Subtract from .
Step 4
Replace with to show the final answer.
Step 5
Step 5.1
To verify the inverse, check if and .
Step 5.2
Evaluate .
Step 5.2.1
Set up the composite result function.
Step 5.2.2
Evaluate by substituting in the value of into .
Step 5.2.3
Simplify each term.
Step 5.2.3.1
Use the Binomial Theorem.
Step 5.2.3.2
Simplify each term.
Step 5.2.3.2.1
Rewrite as .
Step 5.2.3.2.1.1
Use to rewrite as .
Step 5.2.3.2.1.2
Apply the power rule and multiply exponents, .
Step 5.2.3.2.1.3
Combine and .
Step 5.2.3.2.1.4
Cancel the common factor of .
Step 5.2.3.2.1.4.1
Cancel the common factor.
Step 5.2.3.2.1.4.2
Rewrite the expression.
Step 5.2.3.2.1.5
Simplify.
Step 5.2.3.2.2
Rewrite as .
Step 5.2.3.2.3
Multiply by .
Step 5.2.3.2.4
Raise to the power of .
Step 5.2.3.2.5
Multiply by .
Step 5.2.3.2.6
Raise to the power of .
Step 5.2.3.3
Subtract from .
Step 5.2.3.4
Rewrite as .
Step 5.2.3.5
Expand using the FOIL Method.
Step 5.2.3.5.1
Apply the distributive property.
Step 5.2.3.5.2
Apply the distributive property.
Step 5.2.3.5.3
Apply the distributive property.
Step 5.2.3.6
Simplify and combine like terms.
Step 5.2.3.6.1
Simplify each term.
Step 5.2.3.6.1.1
Multiply .
Step 5.2.3.6.1.1.1
Raise to the power of .
Step 5.2.3.6.1.1.2
Raise to the power of .
Step 5.2.3.6.1.1.3
Use the power rule to combine exponents.
Step 5.2.3.6.1.1.4
Add and .
Step 5.2.3.6.1.2
Rewrite as .
Step 5.2.3.6.1.3
Move to the left of .
Step 5.2.3.6.1.4
Multiply by .
Step 5.2.3.6.2
Subtract from .
Step 5.2.3.7
Apply the distributive property.
Step 5.2.3.8
Simplify.
Step 5.2.3.8.1
Multiply by .
Step 5.2.3.8.2
Multiply by .
Step 5.2.3.9
Apply the distributive property.
Step 5.2.3.10
Multiply by .
Step 5.2.4
Simplify by adding terms.
Step 5.2.4.1
Combine the opposite terms in .
Step 5.2.4.1.1
Add and .
Step 5.2.4.1.2
Add and .
Step 5.2.4.1.3
Subtract from .
Step 5.2.4.1.4
Add and .
Step 5.2.4.1.5
Add and .
Step 5.2.4.1.6
Add and .
Step 5.2.4.2
Subtract from .
Step 5.2.4.3
Combine the opposite terms in .
Step 5.2.4.3.1
Add and .
Step 5.2.4.3.2
Add and .
Step 5.3
Evaluate .
Step 5.3.1
Set up the composite result function.
Step 5.3.2
Evaluate by substituting in the value of into .
Step 5.3.3
Simplify each term.
Step 5.3.3.1
Add and .
Step 5.3.3.2
Rewrite in a factored form.
Step 5.3.3.2.1
Regroup terms.
Step 5.3.3.2.2
Rewrite as .
Step 5.3.3.2.3
Since both terms are perfect cubes, factor using the sum of cubes formula, where and .
Step 5.3.3.2.4
Simplify.
Step 5.3.3.2.4.1
Multiply by .
Step 5.3.3.2.4.2
Raise to the power of .
Step 5.3.3.2.5
Factor out of .
Step 5.3.3.2.5.1
Factor out of .
Step 5.3.3.2.5.2
Factor out of .
Step 5.3.3.2.5.3
Factor out of .
Step 5.3.3.2.6
Factor out of .
Step 5.3.3.2.6.1
Factor out of .
Step 5.3.3.2.6.2
Factor out of .
Step 5.3.3.2.7
Add and .
Step 5.3.3.2.8
Factor using the perfect square rule.
Step 5.3.3.2.8.1
Rewrite as .
Step 5.3.3.2.8.2
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
Step 5.3.3.2.8.3
Rewrite the polynomial.
Step 5.3.3.2.8.4
Factor using the perfect square trinomial rule , where and .
Step 5.3.3.3
Multiply by by adding the exponents.
Step 5.3.3.3.1
Multiply by .
Step 5.3.3.3.1.1
Raise to the power of .
Step 5.3.3.3.1.2
Use the power rule to combine exponents.
Step 5.3.3.3.2
Add and .
Step 5.3.3.4
Pull terms out from under the radical, assuming real numbers.
Step 5.3.4
Combine the opposite terms in .
Step 5.3.4.1
Subtract from .
Step 5.3.4.2
Add and .
Step 5.4
Since and , then is the inverse of .