Calculus Examples

Write as a Function of x square root of 3xy=2+x^2y
Step 1
To remove the radical on the left side of the equation, square both sides of the equation.
Step 2
Simplify each side of the equation.
Tap for more steps...
Step 2.1
Use to rewrite as .
Step 2.2
Simplify the left side.
Tap for more steps...
Step 2.2.1
Simplify .
Tap for more steps...
Step 2.2.1.1
Multiply the exponents in .
Tap for more steps...
Step 2.2.1.1.1
Apply the power rule and multiply exponents, .
Step 2.2.1.1.2
Cancel the common factor of .
Tap for more steps...
Step 2.2.1.1.2.1
Cancel the common factor.
Step 2.2.1.1.2.2
Rewrite the expression.
Step 2.2.1.2
Simplify.
Step 2.3
Simplify the right side.
Tap for more steps...
Step 2.3.1
Simplify .
Tap for more steps...
Step 2.3.1.1
Rewrite as .
Step 2.3.1.2
Expand using the FOIL Method.
Tap for more steps...
Step 2.3.1.2.1
Apply the distributive property.
Step 2.3.1.2.2
Apply the distributive property.
Step 2.3.1.2.3
Apply the distributive property.
Step 2.3.1.3
Simplify and combine like terms.
Tap for more steps...
Step 2.3.1.3.1
Simplify each term.
Tap for more steps...
Step 2.3.1.3.1.1
Multiply by .
Step 2.3.1.3.1.2
Move to the left of .
Step 2.3.1.3.1.3
Multiply by by adding the exponents.
Tap for more steps...
Step 2.3.1.3.1.3.1
Move .
Step 2.3.1.3.1.3.2
Use the power rule to combine exponents.
Step 2.3.1.3.1.3.3
Add and .
Step 2.3.1.3.1.4
Multiply by by adding the exponents.
Tap for more steps...
Step 2.3.1.3.1.4.1
Move .
Step 2.3.1.3.1.4.2
Multiply by .
Step 2.3.1.3.2
Add and .
Step 3
Solve for .
Tap for more steps...
Step 3.1
Since is on the right side of the equation, switch the sides so it is on the left side of the equation.
Step 3.2
Subtract from both sides of the equation.
Step 3.3
Use the quadratic formula to find the solutions.
Step 3.4
Substitute the values , , and into the quadratic formula and solve for .
Step 3.5
Simplify.
Tap for more steps...
Step 3.5.1
Simplify the numerator.
Tap for more steps...
Step 3.5.1.1
Apply the distributive property.
Step 3.5.1.2
Multiply by .
Step 3.5.1.3
Multiply by .
Step 3.5.1.4
Rewrite as .
Step 3.5.1.5
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 3.5.1.6
Simplify.
Tap for more steps...
Step 3.5.1.6.1
Factor out of .
Tap for more steps...
Step 3.5.1.6.1.1
Factor out of .
Step 3.5.1.6.1.2
Factor out of .
Step 3.5.1.6.1.3
Factor out of .
Step 3.5.1.6.1.4
Factor out of .
Step 3.5.1.6.1.5
Factor out of .
Step 3.5.1.6.2
Multiply by .
Step 3.5.1.6.3
Add and .
Step 3.5.1.6.4
Combine exponents.
Tap for more steps...
Step 3.5.1.6.4.1
Multiply by .
Step 3.5.1.6.4.2
Multiply by .
Step 3.5.1.7
Combine the opposite terms in .
Tap for more steps...
Step 3.5.1.7.1
Subtract from .
Step 3.5.1.7.2
Add and .
Step 3.5.1.8
Combine exponents.
Tap for more steps...
Step 3.5.1.8.1
Raise to the power of .
Step 3.5.1.8.2
Raise to the power of .
Step 3.5.1.8.3
Use the power rule to combine exponents.
Step 3.5.1.8.4
Add and .
Step 3.5.1.9
Add parentheses.
Step 3.5.1.10
Pull terms out from under the radical.
Step 3.5.2
Reorder factors in .
Step 3.6
Simplify the expression to solve for the portion of the .
Tap for more steps...
Step 3.6.1
Simplify the numerator.
Tap for more steps...
Step 3.6.1.1
Apply the distributive property.
Step 3.6.1.2
Multiply by .
Step 3.6.1.3
Multiply by .
Step 3.6.1.4
Rewrite as .
Step 3.6.1.5
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 3.6.1.6
Simplify.
Tap for more steps...
Step 3.6.1.6.1
Factor out of .
Tap for more steps...
Step 3.6.1.6.1.1
Factor out of .
Step 3.6.1.6.1.2
Factor out of .
Step 3.6.1.6.1.3
Factor out of .
Step 3.6.1.6.1.4
Factor out of .
Step 3.6.1.6.1.5
Factor out of .
Step 3.6.1.6.2
Multiply by .
Step 3.6.1.6.3
Add and .
Step 3.6.1.6.4
Combine exponents.
Tap for more steps...
Step 3.6.1.6.4.1
Multiply by .
Step 3.6.1.6.4.2
Multiply by .
Step 3.6.1.7
Combine the opposite terms in .
Tap for more steps...
Step 3.6.1.7.1
Subtract from .
Step 3.6.1.7.2
Add and .
Step 3.6.1.8
Combine exponents.
Tap for more steps...
Step 3.6.1.8.1
Raise to the power of .
Step 3.6.1.8.2
Raise to the power of .
Step 3.6.1.8.3
Use the power rule to combine exponents.
Step 3.6.1.8.4
Add and .
Step 3.6.1.9
Add parentheses.
Step 3.6.1.10
Pull terms out from under the radical.
Step 3.6.2
Reorder factors in .
Step 3.6.3
Change the to .
Step 3.6.4
Factor out of .
Tap for more steps...
Step 3.6.4.1
Factor out of .
Step 3.6.4.2
Factor out of .
Step 3.6.4.3
Factor out of .
Step 3.6.4.4
Factor out of .
Step 3.6.4.5
Factor out of .
Step 3.6.5
Cancel the common factors.
Tap for more steps...
Step 3.6.5.1
Factor out of .
Step 3.6.5.2
Cancel the common factor.
Step 3.6.5.3
Rewrite the expression.
Step 3.6.6
Factor out of .
Step 3.6.7
Rewrite as .
Step 3.6.8
Factor out of .
Step 3.6.9
Factor out of .
Step 3.6.10
Factor out of .
Step 3.6.11
Rewrite as .
Step 3.6.12
Move the negative in front of the fraction.
Step 3.7
Simplify the expression to solve for the portion of the .
Tap for more steps...
Step 3.7.1
Simplify the numerator.
Tap for more steps...
Step 3.7.1.1
Apply the distributive property.
Step 3.7.1.2
Multiply by .
Step 3.7.1.3
Multiply by .
Step 3.7.1.4
Rewrite as .
Step 3.7.1.5
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 3.7.1.6
Simplify.
Tap for more steps...
Step 3.7.1.6.1
Factor out of .
Tap for more steps...
Step 3.7.1.6.1.1
Factor out of .
Step 3.7.1.6.1.2
Factor out of .
Step 3.7.1.6.1.3
Factor out of .
Step 3.7.1.6.1.4
Factor out of .
Step 3.7.1.6.1.5
Factor out of .
Step 3.7.1.6.2
Multiply by .
Step 3.7.1.6.3
Add and .
Step 3.7.1.6.4
Combine exponents.
Tap for more steps...
Step 3.7.1.6.4.1
Multiply by .
Step 3.7.1.6.4.2
Multiply by .
Step 3.7.1.7
Combine the opposite terms in .
Tap for more steps...
Step 3.7.1.7.1
Subtract from .
Step 3.7.1.7.2
Add and .
Step 3.7.1.8
Combine exponents.
Tap for more steps...
Step 3.7.1.8.1
Raise to the power of .
Step 3.7.1.8.2
Raise to the power of .
Step 3.7.1.8.3
Use the power rule to combine exponents.
Step 3.7.1.8.4
Add and .
Step 3.7.1.9
Add parentheses.
Step 3.7.1.10
Pull terms out from under the radical.
Step 3.7.2
Reorder factors in .
Step 3.7.3
Change the to .
Step 3.7.4
Factor out of .
Tap for more steps...
Step 3.7.4.1
Factor out of .
Step 3.7.4.2
Factor out of .
Step 3.7.4.3
Factor out of .
Step 3.7.4.4
Factor out of .
Step 3.7.4.5
Factor out of .
Step 3.7.5
Cancel the common factors.
Tap for more steps...
Step 3.7.5.1
Factor out of .
Step 3.7.5.2
Cancel the common factor.
Step 3.7.5.3
Rewrite the expression.
Step 3.7.6
Factor out of .
Step 3.7.7
Rewrite as .
Step 3.7.8
Factor out of .
Step 3.7.9
Factor out of .
Step 3.7.10
Factor out of .
Step 3.7.11
Rewrite as .
Step 3.7.12
Move the negative in front of the fraction.
Step 3.8
The final answer is the combination of both solutions.