Enter a problem...
Calculus Examples
Step 1
To remove the radical on the left side of the equation, square both sides of the equation.
Step 2
Step 2.1
Use to rewrite as .
Step 2.2
Simplify the left side.
Step 2.2.1
Simplify .
Step 2.2.1.1
Multiply the exponents in .
Step 2.2.1.1.1
Apply the power rule and multiply exponents, .
Step 2.2.1.1.2
Cancel the common factor of .
Step 2.2.1.1.2.1
Cancel the common factor.
Step 2.2.1.1.2.2
Rewrite the expression.
Step 2.2.1.2
Simplify.
Step 2.3
Simplify the right side.
Step 2.3.1
Simplify .
Step 2.3.1.1
Rewrite as .
Step 2.3.1.2
Expand using the FOIL Method.
Step 2.3.1.2.1
Apply the distributive property.
Step 2.3.1.2.2
Apply the distributive property.
Step 2.3.1.2.3
Apply the distributive property.
Step 2.3.1.3
Simplify and combine like terms.
Step 2.3.1.3.1
Simplify each term.
Step 2.3.1.3.1.1
Multiply by .
Step 2.3.1.3.1.2
Move to the left of .
Step 2.3.1.3.1.3
Multiply by by adding the exponents.
Step 2.3.1.3.1.3.1
Move .
Step 2.3.1.3.1.3.2
Use the power rule to combine exponents.
Step 2.3.1.3.1.3.3
Add and .
Step 2.3.1.3.1.4
Multiply by by adding the exponents.
Step 2.3.1.3.1.4.1
Move .
Step 2.3.1.3.1.4.2
Multiply by .
Step 2.3.1.3.2
Add and .
Step 3
Step 3.1
Since is on the right side of the equation, switch the sides so it is on the left side of the equation.
Step 3.2
Subtract from both sides of the equation.
Step 3.3
Use the quadratic formula to find the solutions.
Step 3.4
Substitute the values , , and into the quadratic formula and solve for .
Step 3.5
Simplify.
Step 3.5.1
Simplify the numerator.
Step 3.5.1.1
Apply the distributive property.
Step 3.5.1.2
Multiply by .
Step 3.5.1.3
Multiply by .
Step 3.5.1.4
Rewrite as .
Step 3.5.1.5
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 3.5.1.6
Simplify.
Step 3.5.1.6.1
Factor out of .
Step 3.5.1.6.1.1
Factor out of .
Step 3.5.1.6.1.2
Factor out of .
Step 3.5.1.6.1.3
Factor out of .
Step 3.5.1.6.1.4
Factor out of .
Step 3.5.1.6.1.5
Factor out of .
Step 3.5.1.6.2
Multiply by .
Step 3.5.1.6.3
Add and .
Step 3.5.1.6.4
Combine exponents.
Step 3.5.1.6.4.1
Multiply by .
Step 3.5.1.6.4.2
Multiply by .
Step 3.5.1.7
Combine the opposite terms in .
Step 3.5.1.7.1
Subtract from .
Step 3.5.1.7.2
Add and .
Step 3.5.1.8
Combine exponents.
Step 3.5.1.8.1
Raise to the power of .
Step 3.5.1.8.2
Raise to the power of .
Step 3.5.1.8.3
Use the power rule to combine exponents.
Step 3.5.1.8.4
Add and .
Step 3.5.1.9
Add parentheses.
Step 3.5.1.10
Pull terms out from under the radical.
Step 3.5.2
Reorder factors in .
Step 3.6
Simplify the expression to solve for the portion of the .
Step 3.6.1
Simplify the numerator.
Step 3.6.1.1
Apply the distributive property.
Step 3.6.1.2
Multiply by .
Step 3.6.1.3
Multiply by .
Step 3.6.1.4
Rewrite as .
Step 3.6.1.5
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 3.6.1.6
Simplify.
Step 3.6.1.6.1
Factor out of .
Step 3.6.1.6.1.1
Factor out of .
Step 3.6.1.6.1.2
Factor out of .
Step 3.6.1.6.1.3
Factor out of .
Step 3.6.1.6.1.4
Factor out of .
Step 3.6.1.6.1.5
Factor out of .
Step 3.6.1.6.2
Multiply by .
Step 3.6.1.6.3
Add and .
Step 3.6.1.6.4
Combine exponents.
Step 3.6.1.6.4.1
Multiply by .
Step 3.6.1.6.4.2
Multiply by .
Step 3.6.1.7
Combine the opposite terms in .
Step 3.6.1.7.1
Subtract from .
Step 3.6.1.7.2
Add and .
Step 3.6.1.8
Combine exponents.
Step 3.6.1.8.1
Raise to the power of .
Step 3.6.1.8.2
Raise to the power of .
Step 3.6.1.8.3
Use the power rule to combine exponents.
Step 3.6.1.8.4
Add and .
Step 3.6.1.9
Add parentheses.
Step 3.6.1.10
Pull terms out from under the radical.
Step 3.6.2
Reorder factors in .
Step 3.6.3
Change the to .
Step 3.6.4
Factor out of .
Step 3.6.4.1
Factor out of .
Step 3.6.4.2
Factor out of .
Step 3.6.4.3
Factor out of .
Step 3.6.4.4
Factor out of .
Step 3.6.4.5
Factor out of .
Step 3.6.5
Cancel the common factors.
Step 3.6.5.1
Factor out of .
Step 3.6.5.2
Cancel the common factor.
Step 3.6.5.3
Rewrite the expression.
Step 3.6.6
Factor out of .
Step 3.6.7
Rewrite as .
Step 3.6.8
Factor out of .
Step 3.6.9
Factor out of .
Step 3.6.10
Factor out of .
Step 3.6.11
Rewrite as .
Step 3.6.12
Move the negative in front of the fraction.
Step 3.7
Simplify the expression to solve for the portion of the .
Step 3.7.1
Simplify the numerator.
Step 3.7.1.1
Apply the distributive property.
Step 3.7.1.2
Multiply by .
Step 3.7.1.3
Multiply by .
Step 3.7.1.4
Rewrite as .
Step 3.7.1.5
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 3.7.1.6
Simplify.
Step 3.7.1.6.1
Factor out of .
Step 3.7.1.6.1.1
Factor out of .
Step 3.7.1.6.1.2
Factor out of .
Step 3.7.1.6.1.3
Factor out of .
Step 3.7.1.6.1.4
Factor out of .
Step 3.7.1.6.1.5
Factor out of .
Step 3.7.1.6.2
Multiply by .
Step 3.7.1.6.3
Add and .
Step 3.7.1.6.4
Combine exponents.
Step 3.7.1.6.4.1
Multiply by .
Step 3.7.1.6.4.2
Multiply by .
Step 3.7.1.7
Combine the opposite terms in .
Step 3.7.1.7.1
Subtract from .
Step 3.7.1.7.2
Add and .
Step 3.7.1.8
Combine exponents.
Step 3.7.1.8.1
Raise to the power of .
Step 3.7.1.8.2
Raise to the power of .
Step 3.7.1.8.3
Use the power rule to combine exponents.
Step 3.7.1.8.4
Add and .
Step 3.7.1.9
Add parentheses.
Step 3.7.1.10
Pull terms out from under the radical.
Step 3.7.2
Reorder factors in .
Step 3.7.3
Change the to .
Step 3.7.4
Factor out of .
Step 3.7.4.1
Factor out of .
Step 3.7.4.2
Factor out of .
Step 3.7.4.3
Factor out of .
Step 3.7.4.4
Factor out of .
Step 3.7.4.5
Factor out of .
Step 3.7.5
Cancel the common factors.
Step 3.7.5.1
Factor out of .
Step 3.7.5.2
Cancel the common factor.
Step 3.7.5.3
Rewrite the expression.
Step 3.7.6
Factor out of .
Step 3.7.7
Rewrite as .
Step 3.7.8
Factor out of .
Step 3.7.9
Factor out of .
Step 3.7.10
Factor out of .
Step 3.7.11
Rewrite as .
Step 3.7.12
Move the negative in front of the fraction.
Step 3.8
The final answer is the combination of both solutions.