Enter a problem...
Calculus Examples
Step 1
Step 1.1
Take the limit of the numerator and the limit of the denominator.
Step 1.2
The limit at infinity of a polynomial whose leading coefficient is positive is infinity.
Step 1.3
As log approaches infinity, the value goes to .
Step 1.4
Infinity divided by infinity is undefined.
Undefined
Step 2
Since is of indeterminate form, apply L'Hospital's Rule. L'Hospital's Rule states that the limit of a quotient of functions is equal to the limit of the quotient of their derivatives.
Step 3
Step 3.1
Differentiate the numerator and denominator.
Step 3.2
Since is constant with respect to , the derivative of with respect to is .
Step 3.3
Differentiate using the Power Rule which states that is where .
Step 3.4
Multiply by .
Step 3.5
Differentiate using the chain rule, which states that is where and .
Step 3.5.1
To apply the Chain Rule, set as .
Step 3.5.2
The derivative of with respect to is .
Step 3.5.3
Replace all occurrences of with .
Step 3.6
By the Sum Rule, the derivative of with respect to is .
Step 3.7
Differentiate using the Power Rule which states that is where .
Step 3.8
Since is constant with respect to , the derivative of with respect to is .
Step 3.9
Add and .
Step 3.10
Combine and .
Step 3.11
Combine and .
Step 4
Multiply the numerator by the reciprocal of the denominator.
Step 5
Step 5.1
Combine and .
Step 5.2
Cancel the common factor of and .
Step 5.2.1
Factor out of .
Step 5.2.2
Cancel the common factors.
Step 5.2.2.1
Factor out of .
Step 5.2.2.2
Cancel the common factor.
Step 5.2.2.3
Rewrite the expression.
Step 6
Step 6.1
Evaluate the limit of the numerator and the limit of the denominator.
Step 6.1.1
Take the limit of the numerator and the limit of the denominator.
Step 6.1.2
Evaluate the limit of the numerator.
Step 6.1.2.1
Simplify by multiplying through.
Step 6.1.2.1.1
Apply the distributive property.
Step 6.1.2.1.2
Multiply by .
Step 6.1.2.2
The limit at infinity of a polynomial whose leading coefficient is positive is infinity.
Step 6.1.3
The limit at infinity of a polynomial whose leading coefficient is positive is infinity.
Step 6.1.4
Infinity divided by infinity is undefined.
Undefined
Step 6.2
Since is of indeterminate form, apply L'Hospital's Rule. L'Hospital's Rule states that the limit of a quotient of functions is equal to the limit of the quotient of their derivatives.
Step 6.3
Find the derivative of the numerator and denominator.
Step 6.3.1
Differentiate the numerator and denominator.
Step 6.3.2
Since is constant with respect to , the derivative of with respect to is .
Step 6.3.3
By the Sum Rule, the derivative of with respect to is .
Step 6.3.4
Differentiate using the Power Rule which states that is where .
Step 6.3.5
Since is constant with respect to , the derivative of with respect to is .
Step 6.3.6
Add and .
Step 6.3.7
Multiply by .
Step 6.3.8
Differentiate using the Power Rule which states that is where .
Step 6.4
Divide by .
Step 7
The limit at infinity of a polynomial whose leading coefficient is positive is infinity.