Enter a problem...
Calculus Examples
Step 1
Divide the numerator and denominator by the fastest growing term in the denominator.
Step 2
Step 2.1
Cancel the common factor of .
Step 2.1.1
Cancel the common factor.
Step 2.1.2
Rewrite the expression.
Step 2.2
Cancel the common factor of .
Step 2.2.1
Cancel the common factor.
Step 2.2.2
Divide by .
Step 2.3
Split the limit using the Limits Quotient Rule on the limit as approaches .
Step 2.4
Split the limit using the Sum of Limits Rule on the limit as approaches .
Step 2.5
Evaluate the limit of which is constant as approaches .
Step 3
Step 3.1
Evaluate the limit of the numerator and the limit of the denominator.
Step 3.1.1
Take the limit of the numerator and the limit of the denominator.
Step 3.1.2
The limit at infinity of a polynomial whose leading coefficient is positive is infinity.
Step 3.1.3
Since the exponent approaches , the quantity approaches .
Step 3.1.4
Infinity divided by infinity is undefined.
Undefined
Step 3.2
Since is of indeterminate form, apply L'Hospital's Rule. L'Hospital's Rule states that the limit of a quotient of functions is equal to the limit of the quotient of their derivatives.
Step 3.3
Find the derivative of the numerator and denominator.
Step 3.3.1
Differentiate the numerator and denominator.
Step 3.3.2
Differentiate using the Power Rule which states that is where .
Step 3.3.3
Differentiate using the chain rule, which states that is where and .
Step 3.3.3.1
To apply the Chain Rule, set as .
Step 3.3.3.2
Differentiate using the Exponential Rule which states that is where =.
Step 3.3.3.3
Replace all occurrences of with .
Step 3.3.4
Since is constant with respect to , the derivative of with respect to is .
Step 3.3.5
Differentiate using the Power Rule which states that is where .
Step 3.3.6
Multiply by .
Step 3.3.7
Move to the left of .
Step 4
Move the term outside of the limit because it is constant with respect to .
Step 5
Step 5.1
Evaluate the limit of the numerator and the limit of the denominator.
Step 5.1.1
Take the limit of the numerator and the limit of the denominator.
Step 5.1.2
The limit at infinity of a polynomial whose leading coefficient is positive is infinity.
Step 5.1.3
Since the exponent approaches , the quantity approaches .
Step 5.1.4
Infinity divided by infinity is undefined.
Undefined
Step 5.2
Since is of indeterminate form, apply L'Hospital's Rule. L'Hospital's Rule states that the limit of a quotient of functions is equal to the limit of the quotient of their derivatives.
Step 5.3
Find the derivative of the numerator and denominator.
Step 5.3.1
Differentiate the numerator and denominator.
Step 5.3.2
Differentiate using the Power Rule which states that is where .
Step 5.3.3
Differentiate using the chain rule, which states that is where and .
Step 5.3.3.1
To apply the Chain Rule, set as .
Step 5.3.3.2
Differentiate using the Exponential Rule which states that is where =.
Step 5.3.3.3
Replace all occurrences of with .
Step 5.3.4
Since is constant with respect to , the derivative of with respect to is .
Step 5.3.5
Differentiate using the Power Rule which states that is where .
Step 5.3.6
Multiply by .
Step 5.3.7
Move to the left of .
Step 6
Move the term outside of the limit because it is constant with respect to .
Step 7
Since its numerator approaches a real number while its denominator is unbounded, the fraction approaches .
Step 8
Step 8.1
Split the limit using the Sum of Limits Rule on the limit as approaches .
Step 8.2
Evaluate the limit of which is constant as approaches .
Step 9
Step 9.1
Evaluate the limit of the numerator and the limit of the denominator.
Step 9.1.1
Take the limit of the numerator and the limit of the denominator.
Step 9.1.2
The limit at infinity of a polynomial whose leading coefficient is positive is infinity.
Step 9.1.3
Since the exponent approaches , the quantity approaches .
Step 9.1.4
Infinity divided by infinity is undefined.
Undefined
Step 9.2
Since is of indeterminate form, apply L'Hospital's Rule. L'Hospital's Rule states that the limit of a quotient of functions is equal to the limit of the quotient of their derivatives.
Step 9.3
Find the derivative of the numerator and denominator.
Step 9.3.1
Differentiate the numerator and denominator.
Step 9.3.2
Differentiate using the Power Rule which states that is where .
Step 9.3.3
Differentiate using the chain rule, which states that is where and .
Step 9.3.3.1
To apply the Chain Rule, set as .
Step 9.3.3.2
Differentiate using the Exponential Rule which states that is where =.
Step 9.3.3.3
Replace all occurrences of with .
Step 9.3.4
Since is constant with respect to , the derivative of with respect to is .
Step 9.3.5
Differentiate using the Power Rule which states that is where .
Step 9.3.6
Multiply by .
Step 9.3.7
Move to the left of .
Step 10
Move the term outside of the limit because it is constant with respect to .
Step 11
Since its numerator approaches a real number while its denominator is unbounded, the fraction approaches .
Step 12
Step 12.1
Simplify the numerator.
Step 12.1.1
Multiply .
Step 12.1.1.1
Multiply by .
Step 12.1.1.2
Multiply by .
Step 12.1.2
Multiply by .
Step 12.1.3
Add and .
Step 12.2
Simplify the denominator.
Step 12.2.1
Multiply .
Step 12.2.1.1
Multiply by .
Step 12.2.1.2
Multiply by .
Step 12.2.2
Add and .