Calculus Examples

Find the Critical Points f(x)=10/3x^3-41/2x^2+4x+6
Step 1
Find the first derivative.
Tap for more steps...
Step 1.1
Find the first derivative.
Tap for more steps...
Step 1.1.1
By the Sum Rule, the derivative of with respect to is .
Step 1.1.2
Evaluate .
Tap for more steps...
Step 1.1.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.2.2
Differentiate using the Power Rule which states that is where .
Step 1.1.2.3
Combine and .
Step 1.1.2.4
Multiply by .
Step 1.1.2.5
Combine and .
Step 1.1.2.6
Cancel the common factor of and .
Tap for more steps...
Step 1.1.2.6.1
Factor out of .
Step 1.1.2.6.2
Cancel the common factors.
Tap for more steps...
Step 1.1.2.6.2.1
Factor out of .
Step 1.1.2.6.2.2
Cancel the common factor.
Step 1.1.2.6.2.3
Rewrite the expression.
Step 1.1.2.6.2.4
Divide by .
Step 1.1.3
Evaluate .
Tap for more steps...
Step 1.1.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.3.2
Differentiate using the Power Rule which states that is where .
Step 1.1.3.3
Multiply by .
Step 1.1.3.4
Combine and .
Step 1.1.3.5
Multiply by .
Step 1.1.3.6
Combine and .
Step 1.1.3.7
Cancel the common factor of and .
Tap for more steps...
Step 1.1.3.7.1
Factor out of .
Step 1.1.3.7.2
Cancel the common factors.
Tap for more steps...
Step 1.1.3.7.2.1
Factor out of .
Step 1.1.3.7.2.2
Cancel the common factor.
Step 1.1.3.7.2.3
Rewrite the expression.
Step 1.1.3.7.2.4
Divide by .
Step 1.1.4
Evaluate .
Tap for more steps...
Step 1.1.4.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.4.2
Differentiate using the Power Rule which states that is where .
Step 1.1.4.3
Multiply by .
Step 1.1.5
Differentiate using the Constant Rule.
Tap for more steps...
Step 1.1.5.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.5.2
Add and .
Step 1.2
The first derivative of with respect to is .
Step 2
Set the first derivative equal to then solve the equation .
Tap for more steps...
Step 2.1
Set the first derivative equal to .
Step 2.2
Factor by grouping.
Tap for more steps...
Step 2.2.1
For a polynomial of the form , rewrite the middle term as a sum of two terms whose product is and whose sum is .
Tap for more steps...
Step 2.2.1.1
Factor out of .
Step 2.2.1.2
Rewrite as plus
Step 2.2.1.3
Apply the distributive property.
Step 2.2.2
Factor out the greatest common factor from each group.
Tap for more steps...
Step 2.2.2.1
Group the first two terms and the last two terms.
Step 2.2.2.2
Factor out the greatest common factor (GCF) from each group.
Step 2.2.3
Factor the polynomial by factoring out the greatest common factor, .
Step 2.3
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 2.4
Set equal to and solve for .
Tap for more steps...
Step 2.4.1
Set equal to .
Step 2.4.2
Solve for .
Tap for more steps...
Step 2.4.2.1
Add to both sides of the equation.
Step 2.4.2.2
Divide each term in by and simplify.
Tap for more steps...
Step 2.4.2.2.1
Divide each term in by .
Step 2.4.2.2.2
Simplify the left side.
Tap for more steps...
Step 2.4.2.2.2.1
Cancel the common factor of .
Tap for more steps...
Step 2.4.2.2.2.1.1
Cancel the common factor.
Step 2.4.2.2.2.1.2
Divide by .
Step 2.5
Set equal to and solve for .
Tap for more steps...
Step 2.5.1
Set equal to .
Step 2.5.2
Add to both sides of the equation.
Step 2.6
The final solution is all the values that make true.
Step 3
Find the values where the derivative is undefined.
Tap for more steps...
Step 3.1
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Step 4
Evaluate at each value where the derivative is or undefined.
Tap for more steps...
Step 4.1
Evaluate at .
Tap for more steps...
Step 4.1.1
Substitute for .
Step 4.1.2
Simplify.
Tap for more steps...
Step 4.1.2.1
Simplify each term.
Tap for more steps...
Step 4.1.2.1.1
Apply the product rule to .
Step 4.1.2.1.2
Combine.
Step 4.1.2.1.3
Cancel the common factor of and .
Tap for more steps...
Step 4.1.2.1.3.1
Factor out of .
Step 4.1.2.1.3.2
Cancel the common factors.
Tap for more steps...
Step 4.1.2.1.3.2.1
Factor out of .
Step 4.1.2.1.3.2.2
Cancel the common factor.
Step 4.1.2.1.3.2.3
Rewrite the expression.
Step 4.1.2.1.4
One to any power is one.
Step 4.1.2.1.5
Divide using scientific notation.
Tap for more steps...
Step 4.1.2.1.5.1
Group coefficients together and exponents together to divide numbers in scientific notation.
Step 4.1.2.1.5.2
Divide by .
Step 4.1.2.1.5.3
Move to the numerator using the negative exponent rule .
Step 4.1.2.1.6
Move the decimal point in to the right by place and decrease the power of by .
Step 4.1.2.1.7
Apply the product rule to .
Step 4.1.2.1.8
One to any power is one.
Step 4.1.2.1.9
Raise to the power of .
Step 4.1.2.1.10
Multiply .
Tap for more steps...
Step 4.1.2.1.10.1
Multiply by .
Step 4.1.2.1.10.2
Multiply by .
Step 4.1.2.1.11
Cancel the common factor of .
Tap for more steps...
Step 4.1.2.1.11.1
Factor out of .
Step 4.1.2.1.11.2
Factor out of .
Step 4.1.2.1.11.3
Cancel the common factor.
Step 4.1.2.1.11.4
Rewrite the expression.
Step 4.1.2.1.12
Combine and .
Step 4.1.2.2
To write as a fraction with a common denominator, multiply by .
Step 4.1.2.3
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Tap for more steps...
Step 4.1.2.3.1
Multiply by .
Step 4.1.2.3.2
Multiply by .
Step 4.1.2.4
Combine the numerators over the common denominator.
Step 4.1.2.5
Simplify the numerator.
Tap for more steps...
Step 4.1.2.5.1
Multiply by .
Step 4.1.2.5.2
Add and .
Step 4.1.2.6
To write as a fraction with a common denominator, multiply by .
Step 4.1.2.7
Combine and .
Step 4.1.2.8
Combine the numerators over the common denominator.
Step 4.1.2.9
Simplify the numerator.
Tap for more steps...
Step 4.1.2.9.1
Multiply by .
Step 4.1.2.9.2
Add and .
Step 4.2
Evaluate at .
Tap for more steps...
Step 4.2.1
Substitute for .
Step 4.2.2
Simplify.
Tap for more steps...
Step 4.2.2.1
Simplify each term.
Tap for more steps...
Step 4.2.2.1.1
Raise to the power of .
Step 4.2.2.1.2
Multiply .
Tap for more steps...
Step 4.2.2.1.2.1
Combine and .
Step 4.2.2.1.2.2
Multiply by .
Step 4.2.2.1.3
Raise to the power of .
Step 4.2.2.1.4
Cancel the common factor of .
Tap for more steps...
Step 4.2.2.1.4.1
Move the leading negative in into the numerator.
Step 4.2.2.1.4.2
Factor out of .
Step 4.2.2.1.4.3
Cancel the common factor.
Step 4.2.2.1.4.4
Rewrite the expression.
Step 4.2.2.1.5
Multiply by .
Step 4.2.2.1.6
Multiply by .
Step 4.2.2.2
Find the common denominator.
Tap for more steps...
Step 4.2.2.2.1
Write as a fraction with denominator .
Step 4.2.2.2.2
Multiply by .
Step 4.2.2.2.3
Multiply by .
Step 4.2.2.2.4
Write as a fraction with denominator .
Step 4.2.2.2.5
Multiply by .
Step 4.2.2.2.6
Multiply by .
Step 4.2.2.2.7
Write as a fraction with denominator .
Step 4.2.2.2.8
Multiply by .
Step 4.2.2.2.9
Multiply by .
Step 4.2.2.3
Combine the numerators over the common denominator.
Step 4.2.2.4
Simplify each term.
Tap for more steps...
Step 4.2.2.4.1
Multiply by .
Step 4.2.2.4.2
Multiply by .
Step 4.2.2.4.3
Multiply by .
Step 4.2.2.5
Simplify the expression.
Tap for more steps...
Step 4.2.2.5.1
Subtract from .
Step 4.2.2.5.2
Add and .
Step 4.2.2.5.3
Add and .
Step 4.2.2.5.4
Move the negative in front of the fraction.
Step 4.3
List all of the points.
Step 5