Enter a problem...
Calculus Examples
Step 1
Step 1.1
Find the first derivative.
Step 1.1.1
Differentiate using the Product Rule which states that is where and .
Step 1.1.2
Differentiate using the chain rule, which states that is where and .
Step 1.1.2.1
To apply the Chain Rule, set as .
Step 1.1.2.2
Differentiate using the Power Rule which states that is where .
Step 1.1.2.3
Replace all occurrences of with .
Step 1.1.3
Differentiate.
Step 1.1.3.1
By the Sum Rule, the derivative of with respect to is .
Step 1.1.3.2
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.3.3
Differentiate using the Power Rule which states that is where .
Step 1.1.3.4
Multiply by .
Step 1.1.3.5
Differentiate using the Power Rule which states that is where .
Step 1.1.3.6
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.3.7
Add and .
Step 1.1.3.8
Differentiate using the Power Rule which states that is where .
Step 1.1.3.9
Move to the left of .
Step 1.1.4
Simplify.
Step 1.1.4.1
Apply the distributive property.
Step 1.1.4.2
Multiply by .
Step 1.1.4.3
Multiply by .
Step 1.1.4.4
Factor out of .
Step 1.1.4.4.1
Factor out of .
Step 1.1.4.4.2
Factor out of .
Step 1.1.4.4.3
Factor out of .
Step 1.1.4.5
Simplify each term.
Step 1.1.4.5.1
Expand by multiplying each term in the first expression by each term in the second expression.
Step 1.1.4.5.2
Simplify each term.
Step 1.1.4.5.2.1
Rewrite using the commutative property of multiplication.
Step 1.1.4.5.2.2
Multiply by by adding the exponents.
Step 1.1.4.5.2.2.1
Move .
Step 1.1.4.5.2.2.2
Multiply by .
Step 1.1.4.5.2.2.2.1
Raise to the power of .
Step 1.1.4.5.2.2.2.2
Use the power rule to combine exponents.
Step 1.1.4.5.2.2.3
Add and .
Step 1.1.4.5.2.3
Multiply by .
Step 1.1.4.5.2.4
Multiply by .
Step 1.1.4.5.2.5
Rewrite using the commutative property of multiplication.
Step 1.1.4.5.2.6
Multiply by by adding the exponents.
Step 1.1.4.5.2.6.1
Move .
Step 1.1.4.5.2.6.2
Multiply by .
Step 1.1.4.5.2.7
Multiply by .
Step 1.1.4.5.2.8
Multiply by .
Step 1.1.4.5.2.9
Multiply by .
Step 1.1.4.5.2.10
Multiply by .
Step 1.1.4.5.3
Add and .
Step 1.1.4.5.4
Subtract from .
Step 1.1.4.5.5
Apply the distributive property.
Step 1.1.4.5.6
Simplify.
Step 1.1.4.5.6.1
Rewrite using the commutative property of multiplication.
Step 1.1.4.5.6.2
Rewrite using the commutative property of multiplication.
Step 1.1.4.5.6.3
Rewrite using the commutative property of multiplication.
Step 1.1.4.5.6.4
Move to the left of .
Step 1.1.4.5.7
Simplify each term.
Step 1.1.4.5.7.1
Multiply by by adding the exponents.
Step 1.1.4.5.7.1.1
Move .
Step 1.1.4.5.7.1.2
Multiply by .
Step 1.1.4.5.7.1.2.1
Raise to the power of .
Step 1.1.4.5.7.1.2.2
Use the power rule to combine exponents.
Step 1.1.4.5.7.1.3
Add and .
Step 1.1.4.5.7.2
Multiply by by adding the exponents.
Step 1.1.4.5.7.2.1
Move .
Step 1.1.4.5.7.2.2
Multiply by .
Step 1.1.4.5.7.2.2.1
Raise to the power of .
Step 1.1.4.5.7.2.2.2
Use the power rule to combine exponents.
Step 1.1.4.5.7.2.3
Add and .
Step 1.1.4.5.7.3
Multiply by by adding the exponents.
Step 1.1.4.5.7.3.1
Move .
Step 1.1.4.5.7.3.2
Multiply by .
Step 1.1.4.5.8
Rewrite as .
Step 1.1.4.5.9
Expand by multiplying each term in the first expression by each term in the second expression.
Step 1.1.4.5.10
Simplify each term.
Step 1.1.4.5.10.1
Rewrite using the commutative property of multiplication.
Step 1.1.4.5.10.2
Multiply by by adding the exponents.
Step 1.1.4.5.10.2.1
Move .
Step 1.1.4.5.10.2.2
Use the power rule to combine exponents.
Step 1.1.4.5.10.2.3
Add and .
Step 1.1.4.5.10.3
Multiply by .
Step 1.1.4.5.10.4
Multiply by by adding the exponents.
Step 1.1.4.5.10.4.1
Move .
Step 1.1.4.5.10.4.2
Multiply by .
Step 1.1.4.5.10.4.2.1
Raise to the power of .
Step 1.1.4.5.10.4.2.2
Use the power rule to combine exponents.
Step 1.1.4.5.10.4.3
Add and .
Step 1.1.4.5.10.5
Multiply by .
Step 1.1.4.5.10.6
Rewrite using the commutative property of multiplication.
Step 1.1.4.5.10.7
Multiply by by adding the exponents.
Step 1.1.4.5.10.7.1
Move .
Step 1.1.4.5.10.7.2
Multiply by .
Step 1.1.4.5.10.7.2.1
Raise to the power of .
Step 1.1.4.5.10.7.2.2
Use the power rule to combine exponents.
Step 1.1.4.5.10.7.3
Add and .
Step 1.1.4.5.10.8
Multiply by .
Step 1.1.4.5.10.9
Move to the left of .
Step 1.1.4.5.10.10
Multiply by .
Step 1.1.4.5.10.11
Multiply by .
Step 1.1.4.5.11
Add and .
Step 1.1.4.5.12
Add and .
Step 1.1.4.5.13
Subtract from .
Step 1.1.4.5.14
Subtract from .
Step 1.1.4.5.15
Apply the distributive property.
Step 1.1.4.5.16
Simplify.
Step 1.1.4.5.16.1
Multiply by .
Step 1.1.4.5.16.2
Multiply by .
Step 1.1.4.5.16.3
Multiply by .
Step 1.1.4.5.16.4
Multiply by .
Step 1.1.4.5.16.5
Multiply by .
Step 1.1.4.6
Add and .
Step 1.1.4.7
Add and .
Step 1.1.4.8
Subtract from .
Step 1.1.4.9
Subtract from .
Step 1.1.4.10
Apply the distributive property.
Step 1.1.4.11
Simplify.
Step 1.1.4.11.1
Rewrite using the commutative property of multiplication.
Step 1.1.4.11.2
Rewrite using the commutative property of multiplication.
Step 1.1.4.11.3
Rewrite using the commutative property of multiplication.
Step 1.1.4.11.4
Rewrite using the commutative property of multiplication.
Step 1.1.4.11.5
Move to the left of .
Step 1.1.4.12
Simplify each term.
Step 1.1.4.12.1
Multiply by by adding the exponents.
Step 1.1.4.12.1.1
Move .
Step 1.1.4.12.1.2
Use the power rule to combine exponents.
Step 1.1.4.12.1.3
Add and .
Step 1.1.4.12.2
Multiply by by adding the exponents.
Step 1.1.4.12.2.1
Move .
Step 1.1.4.12.2.2
Use the power rule to combine exponents.
Step 1.1.4.12.2.3
Add and .
Step 1.1.4.12.3
Multiply by by adding the exponents.
Step 1.1.4.12.3.1
Move .
Step 1.1.4.12.3.2
Use the power rule to combine exponents.
Step 1.1.4.12.3.3
Add and .
Step 1.1.4.12.4
Multiply by by adding the exponents.
Step 1.1.4.12.4.1
Move .
Step 1.1.4.12.4.2
Multiply by .
Step 1.1.4.12.4.2.1
Raise to the power of .
Step 1.1.4.12.4.2.2
Use the power rule to combine exponents.
Step 1.1.4.12.4.3
Add and .
Step 1.2
The first derivative of with respect to is .
Step 2
Step 2.1
Set the first derivative equal to .
Step 2.2
Factor the left side of the equation.
Step 2.2.1
Factor out of .
Step 2.2.1.1
Factor out of .
Step 2.2.1.2
Factor out of .
Step 2.2.1.3
Factor out of .
Step 2.2.1.4
Factor out of .
Step 2.2.1.5
Factor out of .
Step 2.2.1.6
Factor out of .
Step 2.2.1.7
Factor out of .
Step 2.2.1.8
Factor out of .
Step 2.2.1.9
Factor out of .
Step 2.2.2
Regroup terms.
Step 2.2.3
Factor out of .
Step 2.2.3.1
Factor out of .
Step 2.2.3.2
Factor out of .
Step 2.2.3.3
Factor out of .
Step 2.2.4
Rewrite as .
Step 2.2.5
Factor.
Step 2.2.5.1
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 2.2.5.2
Remove unnecessary parentheses.
Step 2.2.6
Rewrite as .
Step 2.2.7
Let . Substitute for all occurrences of .
Step 2.2.8
Factor by grouping.
Step 2.2.8.1
For a polynomial of the form , rewrite the middle term as a sum of two terms whose product is and whose sum is .
Step 2.2.8.1.1
Factor out of .
Step 2.2.8.1.2
Rewrite as plus
Step 2.2.8.1.3
Apply the distributive property.
Step 2.2.8.2
Factor out the greatest common factor from each group.
Step 2.2.8.2.1
Group the first two terms and the last two terms.
Step 2.2.8.2.2
Factor out the greatest common factor (GCF) from each group.
Step 2.2.8.3
Factor the polynomial by factoring out the greatest common factor, .
Step 2.2.9
Replace all occurrences of with .
Step 2.2.10
Rewrite as .
Step 2.2.11
Factor.
Step 2.2.11.1
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 2.2.11.2
Remove unnecessary parentheses.
Step 2.2.12
Factor out of .
Step 2.2.12.1
Factor out of .
Step 2.2.12.2
Factor out of .
Step 2.2.12.3
Factor out of .
Step 2.2.13
Let . Substitute for all occurrences of .
Step 2.2.14
Factor by grouping.
Step 2.2.14.1
Reorder terms.
Step 2.2.14.2
For a polynomial of the form , rewrite the middle term as a sum of two terms whose product is and whose sum is .
Step 2.2.14.2.1
Factor out of .
Step 2.2.14.2.2
Rewrite as plus
Step 2.2.14.2.3
Apply the distributive property.
Step 2.2.14.3
Factor out the greatest common factor from each group.
Step 2.2.14.3.1
Group the first two terms and the last two terms.
Step 2.2.14.3.2
Factor out the greatest common factor (GCF) from each group.
Step 2.2.14.4
Factor the polynomial by factoring out the greatest common factor, .
Step 2.2.15
Factor.
Step 2.2.15.1
Factor.
Step 2.2.15.1.1
Replace all occurrences of with .
Step 2.2.15.1.2
Remove unnecessary parentheses.
Step 2.2.15.2
Remove unnecessary parentheses.
Step 2.3
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 2.4
Set equal to and solve for .
Step 2.4.1
Set equal to .
Step 2.4.2
Solve for .
Step 2.4.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 2.4.2.2
Simplify .
Step 2.4.2.2.1
Rewrite as .
Step 2.4.2.2.2
Pull terms out from under the radical, assuming positive real numbers.
Step 2.4.2.2.3
Plus or minus is .
Step 2.5
Set equal to and solve for .
Step 2.5.1
Set equal to .
Step 2.5.2
Subtract from both sides of the equation.
Step 2.6
Set equal to and solve for .
Step 2.6.1
Set equal to .
Step 2.6.2
Add to both sides of the equation.
Step 2.7
Set equal to and solve for .
Step 2.7.1
Set equal to .
Step 2.7.2
Solve for .
Step 2.7.2.1
Add to both sides of the equation.
Step 2.7.2.2
Divide each term in by and simplify.
Step 2.7.2.2.1
Divide each term in by .
Step 2.7.2.2.2
Simplify the left side.
Step 2.7.2.2.2.1
Cancel the common factor of .
Step 2.7.2.2.2.1.1
Cancel the common factor.
Step 2.7.2.2.2.1.2
Divide by .
Step 2.8
Set equal to and solve for .
Step 2.8.1
Set equal to .
Step 2.8.2
Solve for .
Step 2.8.2.1
Subtract from both sides of the equation.
Step 2.8.2.2
Divide each term in by and simplify.
Step 2.8.2.2.1
Divide each term in by .
Step 2.8.2.2.2
Simplify the left side.
Step 2.8.2.2.2.1
Cancel the common factor of .
Step 2.8.2.2.2.1.1
Cancel the common factor.
Step 2.8.2.2.2.1.2
Divide by .
Step 2.8.2.2.3
Simplify the right side.
Step 2.8.2.2.3.1
Move the negative in front of the fraction.
Step 2.9
The final solution is all the values that make true.
Step 3
Step 3.1
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Step 4
Step 4.1
Evaluate at .
Step 4.1.1
Substitute for .
Step 4.1.2
Simplify.
Step 4.1.2.1
Simplify the expression.
Step 4.1.2.1.1
Remove parentheses.
Step 4.1.2.1.2
Raising to any positive power yields .
Step 4.1.2.2
Simplify each term.
Step 4.1.2.2.1
Raising to any positive power yields .
Step 4.1.2.2.2
Multiply by .
Step 4.1.2.3
Simplify the expression.
Step 4.1.2.3.1
Add and .
Step 4.1.2.3.2
Subtract from .
Step 4.1.2.3.3
Raise to the power of .
Step 4.1.2.3.4
Multiply by .
Step 4.2
Evaluate at .
Step 4.2.1
Substitute for .
Step 4.2.2
Simplify.
Step 4.2.2.1
Simplify the expression.
Step 4.2.2.1.1
Remove parentheses.
Step 4.2.2.1.2
Raise to the power of .
Step 4.2.2.2
Simplify each term.
Step 4.2.2.2.1
Raise to the power of .
Step 4.2.2.2.2
Multiply by .
Step 4.2.2.3
Simplify the expression.
Step 4.2.2.3.1
Subtract from .
Step 4.2.2.3.2
Subtract from .
Step 4.2.2.3.3
Raise to the power of .
Step 4.2.2.3.4
Multiply by .
Step 4.3
Evaluate at .
Step 4.3.1
Substitute for .
Step 4.3.2
Simplify.
Step 4.3.2.1
Simplify the expression.
Step 4.3.2.1.1
Remove parentheses.
Step 4.3.2.1.2
One to any power is one.
Step 4.3.2.1.3
Multiply by .
Step 4.3.2.2
Simplify each term.
Step 4.3.2.2.1
One to any power is one.
Step 4.3.2.2.2
Multiply by .
Step 4.3.2.3
Simplify the expression.
Step 4.3.2.3.1
Add and .
Step 4.3.2.3.2
Subtract from .
Step 4.3.2.3.3
Raising to any positive power yields .
Step 4.4
Evaluate at .
Step 4.4.1
Substitute for .
Step 4.4.2
Simplify.
Step 4.4.2.1
Simplify the expression.
Step 4.4.2.1.1
Remove parentheses.
Step 4.4.2.1.2
Apply the product rule to .
Step 4.4.2.1.3
Raise to the power of .
Step 4.4.2.1.4
Raise to the power of .
Step 4.4.2.2
Simplify each term.
Step 4.4.2.2.1
Apply the product rule to .
Step 4.4.2.2.2
Raise to the power of .
Step 4.4.2.2.3
Raise to the power of .
Step 4.4.2.2.4
Cancel the common factor of .
Step 4.4.2.2.4.1
Factor out of .
Step 4.4.2.2.4.2
Cancel the common factor.
Step 4.4.2.2.4.3
Rewrite the expression.
Step 4.4.2.3
Find the common denominator.
Step 4.4.2.3.1
Multiply by .
Step 4.4.2.3.2
Multiply by .
Step 4.4.2.3.3
Write as a fraction with denominator .
Step 4.4.2.3.4
Multiply by .
Step 4.4.2.3.5
Multiply by .
Step 4.4.2.3.6
Reorder the factors of .
Step 4.4.2.3.7
Multiply by .
Step 4.4.2.4
Combine the numerators over the common denominator.
Step 4.4.2.5
Simplify each term.
Step 4.4.2.5.1
Multiply by .
Step 4.4.2.5.2
Multiply by .
Step 4.4.2.6
Reduce the expression by cancelling the common factors.
Step 4.4.2.6.1
Add and .
Step 4.4.2.6.2
Subtract from .
Step 4.4.2.6.3
Cancel the common factor of and .
Step 4.4.2.6.3.1
Factor out of .
Step 4.4.2.6.3.2
Cancel the common factors.
Step 4.4.2.6.3.2.1
Factor out of .
Step 4.4.2.6.3.2.2
Cancel the common factor.
Step 4.4.2.6.3.2.3
Rewrite the expression.
Step 4.4.2.6.4
Move the negative in front of the fraction.
Step 4.4.2.7
Use the power rule to distribute the exponent.
Step 4.4.2.7.1
Apply the product rule to .
Step 4.4.2.7.2
Apply the product rule to .
Step 4.4.2.8
Simplify the expression.
Step 4.4.2.8.1
Raise to the power of .
Step 4.4.2.8.2
Multiply by .
Step 4.4.2.9
Combine.
Step 4.4.2.10
Simplify the expression.
Step 4.4.2.10.1
Raise to the power of .
Step 4.4.2.10.2
Raise to the power of .
Step 4.4.2.10.3
Multiply by .
Step 4.4.2.10.4
Multiply by .
Step 4.5
Evaluate at .
Step 4.5.1
Substitute for .
Step 4.5.2
Simplify.
Step 4.5.2.1
Remove parentheses.
Step 4.5.2.2
Use the power rule to distribute the exponent.
Step 4.5.2.2.1
Apply the product rule to .
Step 4.5.2.2.2
Apply the product rule to .
Step 4.5.2.3
Evaluate the exponents.
Step 4.5.2.3.1
Raise to the power of .
Step 4.5.2.3.2
Raise to the power of .
Step 4.5.2.3.3
Raise to the power of .
Step 4.5.2.4
Simplify each term.
Step 4.5.2.4.1
Use the power rule to distribute the exponent.
Step 4.5.2.4.1.1
Apply the product rule to .
Step 4.5.2.4.1.2
Apply the product rule to .
Step 4.5.2.4.2
Raise to the power of .
Step 4.5.2.4.3
Multiply by .
Step 4.5.2.4.4
Raise to the power of .
Step 4.5.2.4.5
Raise to the power of .
Step 4.5.2.4.6
Cancel the common factor of .
Step 4.5.2.4.6.1
Factor out of .
Step 4.5.2.4.6.2
Cancel the common factor.
Step 4.5.2.4.6.3
Rewrite the expression.
Step 4.5.2.5
Combine fractions.
Step 4.5.2.5.1
Combine the numerators over the common denominator.
Step 4.5.2.5.2
Simplify the expression.
Step 4.5.2.5.2.1
Subtract from .
Step 4.5.2.5.2.2
Divide by .
Step 4.5.2.5.2.3
Add and .
Step 4.5.2.5.2.4
Raising to any positive power yields .
Step 4.5.2.6
Multiply .
Step 4.5.2.6.1
Multiply by .
Step 4.5.2.6.2
Multiply by .
Step 4.6
List all of the points.
Step 5