Calculus Examples

Find the Fourth Derivative f(x)=sin(x)+x^3-7x+2
Step 1
Find the first derivative.
Tap for more steps...
Step 1.1
By the Sum Rule, the derivative of with respect to is .
Step 1.2
The derivative of with respect to is .
Step 1.3
Differentiate using the Power Rule which states that is where .
Step 1.4
Evaluate .
Tap for more steps...
Step 1.4.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.4.2
Differentiate using the Power Rule which states that is where .
Step 1.4.3
Multiply by .
Step 1.5
Since is constant with respect to , the derivative of with respect to is .
Step 1.6
Simplify.
Tap for more steps...
Step 1.6.1
Add and .
Step 1.6.2
Reorder terms.
Step 2
Find the second derivative.
Tap for more steps...
Step 2.1
By the Sum Rule, the derivative of with respect to is .
Step 2.2
Evaluate .
Tap for more steps...
Step 2.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.2.2
Differentiate using the Power Rule which states that is where .
Step 2.2.3
Multiply by .
Step 2.3
Since is constant with respect to , the derivative of with respect to is .
Step 2.4
The derivative of with respect to is .
Step 2.5
Add and .
Step 3
Find the third derivative.
Tap for more steps...
Step 3.1
By the Sum Rule, the derivative of with respect to is .
Step 3.2
Evaluate .
Tap for more steps...
Step 3.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 3.2.2
Differentiate using the Power Rule which states that is where .
Step 3.2.3
Multiply by .
Step 3.3
Evaluate .
Tap for more steps...
Step 3.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 3.3.2
The derivative of with respect to is .
Step 4
Find the fourth derivative.
Tap for more steps...
Step 4.1
Differentiate.
Tap for more steps...
Step 4.1.1
By the Sum Rule, the derivative of with respect to is .
Step 4.1.2
Since is constant with respect to , the derivative of with respect to is .
Step 4.2
Evaluate .
Tap for more steps...
Step 4.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 4.2.2
The derivative of with respect to is .
Step 4.2.3
Multiply by .
Step 4.2.4
Multiply by .
Step 4.3
Add and .
Step 5
The fourth derivative of with respect to is .