Enter a problem...
Calculus Examples
,
Step 1
Step 1.1
Find the first derivative.
Step 1.1.1
Find the first derivative.
Step 1.1.1.1
Differentiate using the chain rule, which states that is where and .
Step 1.1.1.1.1
To apply the Chain Rule, set as .
Step 1.1.1.1.2
The derivative of with respect to is .
Step 1.1.1.1.3
Replace all occurrences of with .
Step 1.1.1.2
Differentiate.
Step 1.1.1.2.1
By the Sum Rule, the derivative of with respect to is .
Step 1.1.1.2.2
Differentiate using the Power Rule which states that is where .
Step 1.1.1.2.3
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.1.2.4
Differentiate using the Power Rule which states that is where .
Step 1.1.1.2.5
Multiply by .
Step 1.1.1.2.6
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.1.2.7
Add and .
Step 1.1.1.3
Simplify.
Step 1.1.1.3.1
Reorder the factors of .
Step 1.1.1.3.2
Multiply by .
Step 1.1.2
The first derivative of with respect to is .
Step 1.2
Set the first derivative equal to then solve the equation .
Step 1.2.1
Set the first derivative equal to .
Step 1.2.2
Set the numerator equal to zero.
Step 1.2.3
Solve the equation for .
Step 1.2.3.1
Subtract from both sides of the equation.
Step 1.2.3.2
Divide each term in by and simplify.
Step 1.2.3.2.1
Divide each term in by .
Step 1.2.3.2.2
Simplify the left side.
Step 1.2.3.2.2.1
Cancel the common factor of .
Step 1.2.3.2.2.1.1
Cancel the common factor.
Step 1.2.3.2.2.1.2
Divide by .
Step 1.2.3.2.3
Simplify the right side.
Step 1.2.3.2.3.1
Move the negative in front of the fraction.
Step 1.3
Find the values where the derivative is undefined.
Step 1.3.1
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Step 1.4
Evaluate at each value where the derivative is or undefined.
Step 1.4.1
Evaluate at .
Step 1.4.1.1
Substitute for .
Step 1.4.1.2
Simplify.
Step 1.4.1.2.1
Simplify each term.
Step 1.4.1.2.1.1
Use the power rule to distribute the exponent.
Step 1.4.1.2.1.1.1
Apply the product rule to .
Step 1.4.1.2.1.1.2
Apply the product rule to .
Step 1.4.1.2.1.2
Raise to the power of .
Step 1.4.1.2.1.3
Multiply by .
Step 1.4.1.2.1.4
Raise to the power of .
Step 1.4.1.2.1.5
Raise to the power of .
Step 1.4.1.2.1.6
Multiply .
Step 1.4.1.2.1.6.1
Multiply by .
Step 1.4.1.2.1.6.2
Combine and .
Step 1.4.1.2.1.6.3
Multiply by .
Step 1.4.1.2.1.7
Move the negative in front of the fraction.
Step 1.4.1.2.2
Find the common denominator.
Step 1.4.1.2.2.1
Multiply by .
Step 1.4.1.2.2.2
Multiply by .
Step 1.4.1.2.2.3
Write as a fraction with denominator .
Step 1.4.1.2.2.4
Multiply by .
Step 1.4.1.2.2.5
Multiply by .
Step 1.4.1.2.2.6
Multiply by .
Step 1.4.1.2.3
Combine the numerators over the common denominator.
Step 1.4.1.2.4
Simplify each term.
Step 1.4.1.2.4.1
Multiply by .
Step 1.4.1.2.4.2
Multiply by .
Step 1.4.1.2.5
Simplify by adding and subtracting.
Step 1.4.1.2.5.1
Subtract from .
Step 1.4.1.2.5.2
Add and .
Step 1.4.2
List all of the points.
Step 2
Step 2.1
Evaluate at .
Step 2.1.1
Substitute for .
Step 2.1.2
Simplify.
Step 2.1.2.1
Simplify each term.
Step 2.1.2.1.1
Raise to the power of .
Step 2.1.2.1.2
Multiply by .
Step 2.1.2.2
Simplify by adding and subtracting.
Step 2.1.2.2.1
Subtract from .
Step 2.1.2.2.2
Add and .
Step 2.2
Evaluate at .
Step 2.2.1
Substitute for .
Step 2.2.2
Simplify.
Step 2.2.2.1
Simplify each term.
Step 2.2.2.1.1
One to any power is one.
Step 2.2.2.1.2
Multiply by .
Step 2.2.2.2
Simplify by adding numbers.
Step 2.2.2.2.1
Add and .
Step 2.2.2.2.2
Add and .
Step 2.3
List all of the points.
Step 3
Compare the values found for each value of in order to determine the absolute maximum and minimum over the given interval. The maximum will occur at the highest value and the minimum will occur at the lowest value.
Absolute Maximum:
Absolute Minimum:
Step 4