Enter a problem...
Calculus Examples
Step 1
Write as a function.
Step 2
Step 2.1
By the Sum Rule, the derivative of with respect to is .
Step 2.2
Evaluate .
Step 2.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.2.2
Differentiate using the Power Rule which states that is where .
Step 2.2.3
Multiply by .
Step 2.3
Since is constant with respect to , the derivative of with respect to is .
Step 2.4
Evaluate .
Step 2.4.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.4.2
Differentiate using the Power Rule which states that is where .
Step 2.4.3
Multiply by .
Step 2.5
Add and .
Step 3
Step 3.1
By the Sum Rule, the derivative of with respect to is .
Step 3.2
Since is constant with respect to , the derivative of with respect to is .
Step 3.3
Since is constant with respect to , the derivative of with respect to is .
Step 3.4
Add and .
Step 4
To find the local maximum and minimum values of the function, set the derivative equal to and solve.
Step 5
Step 5.1
Find the first derivative.
Step 5.1.1
By the Sum Rule, the derivative of with respect to is .
Step 5.1.2
Evaluate .
Step 5.1.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 5.1.2.2
Differentiate using the Power Rule which states that is where .
Step 5.1.2.3
Multiply by .
Step 5.1.3
Since is constant with respect to , the derivative of with respect to is .
Step 5.1.4
Evaluate .
Step 5.1.4.1
Since is constant with respect to , the derivative of with respect to is .
Step 5.1.4.2
Differentiate using the Power Rule which states that is where .
Step 5.1.4.3
Multiply by .
Step 5.1.5
Add and .
Step 5.2
The first derivative of with respect to is .
Step 6
Step 6.1
Set the first derivative equal to .
Step 6.2
Add to both sides of the equation.
Step 7
Critical points to evaluate.
Step 8
Evaluate the second derivative at . If the second derivative is positive, then this is a local minimum. If it is negative, then this is a local maximum.
Step 9
Since the first derivative test failed, there are no local extrema.
No Local Extrema
Step 10