Enter a problem...
Calculus Examples
, ,
Step 1
Step 1.1
Eliminate the equal sides of each equation and combine.
Step 1.2
Solve for .
Step 1.2.1
Find the LCD of the terms in the equation.
Step 1.2.1.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
Step 1.2.1.2
The LCM of one and any expression is the expression.
Step 1.2.2
Multiply each term in by to eliminate the fractions.
Step 1.2.2.1
Multiply each term in by .
Step 1.2.2.2
Simplify the left side.
Step 1.2.2.2.1
Multiply by by adding the exponents.
Step 1.2.2.2.1.1
Move .
Step 1.2.2.2.1.2
Multiply by .
Step 1.2.2.2.1.2.1
Raise to the power of .
Step 1.2.2.2.1.2.2
Use the power rule to combine exponents.
Step 1.2.2.2.1.3
Add and .
Step 1.2.2.3
Simplify the right side.
Step 1.2.2.3.1
Cancel the common factor of .
Step 1.2.2.3.1.1
Cancel the common factor.
Step 1.2.2.3.1.2
Rewrite the expression.
Step 1.2.3
Solve the equation.
Step 1.2.3.1
Subtract from both sides of the equation.
Step 1.2.3.2
Factor the left side of the equation.
Step 1.2.3.2.1
Factor out of .
Step 1.2.3.2.1.1
Factor out of .
Step 1.2.3.2.1.2
Factor out of .
Step 1.2.3.2.1.3
Factor out of .
Step 1.2.3.2.2
Rewrite as .
Step 1.2.3.2.3
Since both terms are perfect cubes, factor using the difference of cubes formula, where and .
Step 1.2.3.2.4
Factor.
Step 1.2.3.2.4.1
Simplify.
Step 1.2.3.2.4.1.1
Multiply by .
Step 1.2.3.2.4.1.2
One to any power is one.
Step 1.2.3.2.4.2
Remove unnecessary parentheses.
Step 1.2.3.3
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 1.2.3.4
Set equal to and solve for .
Step 1.2.3.4.1
Set equal to .
Step 1.2.3.4.2
Add to both sides of the equation.
Step 1.2.3.5
Set equal to and solve for .
Step 1.2.3.5.1
Set equal to .
Step 1.2.3.5.2
Solve for .
Step 1.2.3.5.2.1
Use the quadratic formula to find the solutions.
Step 1.2.3.5.2.2
Substitute the values , , and into the quadratic formula and solve for .
Step 1.2.3.5.2.3
Simplify.
Step 1.2.3.5.2.3.1
Simplify the numerator.
Step 1.2.3.5.2.3.1.1
One to any power is one.
Step 1.2.3.5.2.3.1.2
Multiply .
Step 1.2.3.5.2.3.1.2.1
Multiply by .
Step 1.2.3.5.2.3.1.2.2
Multiply by .
Step 1.2.3.5.2.3.1.3
Subtract from .
Step 1.2.3.5.2.3.1.4
Rewrite as .
Step 1.2.3.5.2.3.1.5
Rewrite as .
Step 1.2.3.5.2.3.1.6
Rewrite as .
Step 1.2.3.5.2.3.2
Multiply by .
Step 1.2.3.5.2.4
Simplify the expression to solve for the portion of the .
Step 1.2.3.5.2.4.1
Simplify the numerator.
Step 1.2.3.5.2.4.1.1
One to any power is one.
Step 1.2.3.5.2.4.1.2
Multiply .
Step 1.2.3.5.2.4.1.2.1
Multiply by .
Step 1.2.3.5.2.4.1.2.2
Multiply by .
Step 1.2.3.5.2.4.1.3
Subtract from .
Step 1.2.3.5.2.4.1.4
Rewrite as .
Step 1.2.3.5.2.4.1.5
Rewrite as .
Step 1.2.3.5.2.4.1.6
Rewrite as .
Step 1.2.3.5.2.4.2
Multiply by .
Step 1.2.3.5.2.4.3
Change the to .
Step 1.2.3.5.2.4.4
Rewrite as .
Step 1.2.3.5.2.4.5
Factor out of .
Step 1.2.3.5.2.4.6
Factor out of .
Step 1.2.3.5.2.4.7
Move the negative in front of the fraction.
Step 1.2.3.5.2.5
Simplify the expression to solve for the portion of the .
Step 1.2.3.5.2.5.1
Simplify the numerator.
Step 1.2.3.5.2.5.1.1
One to any power is one.
Step 1.2.3.5.2.5.1.2
Multiply .
Step 1.2.3.5.2.5.1.2.1
Multiply by .
Step 1.2.3.5.2.5.1.2.2
Multiply by .
Step 1.2.3.5.2.5.1.3
Subtract from .
Step 1.2.3.5.2.5.1.4
Rewrite as .
Step 1.2.3.5.2.5.1.5
Rewrite as .
Step 1.2.3.5.2.5.1.6
Rewrite as .
Step 1.2.3.5.2.5.2
Multiply by .
Step 1.2.3.5.2.5.3
Change the to .
Step 1.2.3.5.2.5.4
Rewrite as .
Step 1.2.3.5.2.5.5
Factor out of .
Step 1.2.3.5.2.5.6
Factor out of .
Step 1.2.3.5.2.5.7
Move the negative in front of the fraction.
Step 1.2.3.5.2.6
The final answer is the combination of both solutions.
Step 1.2.3.6
The final solution is all the values that make true.
Step 1.3
Evaluate when .
Step 1.3.1
Substitute for .
Step 1.3.2
Substitute for in and solve for .
Step 1.3.2.1
Remove parentheses.
Step 1.3.2.2
Simplify .
Step 1.3.2.2.1
One to any power is one.
Step 1.3.2.2.2
Divide by .
Step 1.4
Evaluate when .
Step 1.4.1
Substitute for .
Step 1.4.2
Simplify .
Step 1.4.2.1
Simplify the denominator.
Step 1.4.2.1.1
Apply the product rule to .
Step 1.4.2.1.2
Raise to the power of .
Step 1.4.2.1.3
Apply the product rule to .
Step 1.4.2.1.4
Raise to the power of .
Step 1.4.2.1.5
Rewrite as .
Step 1.4.2.1.6
Expand using the FOIL Method.
Step 1.4.2.1.6.1
Apply the distributive property.
Step 1.4.2.1.6.2
Apply the distributive property.
Step 1.4.2.1.6.3
Apply the distributive property.
Step 1.4.2.1.7
Simplify and combine like terms.
Step 1.4.2.1.7.1
Simplify each term.
Step 1.4.2.1.7.1.1
Multiply by .
Step 1.4.2.1.7.1.2
Multiply by .
Step 1.4.2.1.7.1.3
Multiply by .
Step 1.4.2.1.7.1.4
Multiply .
Step 1.4.2.1.7.1.4.1
Multiply by .
Step 1.4.2.1.7.1.4.2
Multiply by .
Step 1.4.2.1.7.1.4.3
Raise to the power of .
Step 1.4.2.1.7.1.4.4
Raise to the power of .
Step 1.4.2.1.7.1.4.5
Use the power rule to combine exponents.
Step 1.4.2.1.7.1.4.6
Add and .
Step 1.4.2.1.7.1.4.7
Raise to the power of .
Step 1.4.2.1.7.1.4.8
Raise to the power of .
Step 1.4.2.1.7.1.4.9
Use the power rule to combine exponents.
Step 1.4.2.1.7.1.4.10
Add and .
Step 1.4.2.1.7.1.5
Rewrite as .
Step 1.4.2.1.7.1.5.1
Use to rewrite as .
Step 1.4.2.1.7.1.5.2
Apply the power rule and multiply exponents, .
Step 1.4.2.1.7.1.5.3
Combine and .
Step 1.4.2.1.7.1.5.4
Cancel the common factor of .
Step 1.4.2.1.7.1.5.4.1
Cancel the common factor.
Step 1.4.2.1.7.1.5.4.2
Rewrite the expression.
Step 1.4.2.1.7.1.5.5
Evaluate the exponent.
Step 1.4.2.1.7.1.6
Rewrite as .
Step 1.4.2.1.7.1.7
Multiply by .
Step 1.4.2.1.7.2
Subtract from .
Step 1.4.2.1.7.3
Subtract from .
Step 1.4.2.1.8
Reorder and .
Step 1.4.2.1.9
Cancel the common factor of and .
Step 1.4.2.1.9.1
Factor out of .
Step 1.4.2.1.9.2
Factor out of .
Step 1.4.2.1.9.3
Factor out of .
Step 1.4.2.1.9.4
Cancel the common factors.
Step 1.4.2.1.9.4.1
Factor out of .
Step 1.4.2.1.9.4.2
Cancel the common factor.
Step 1.4.2.1.9.4.3
Rewrite the expression.
Step 1.4.2.1.10
Multiply by .
Step 1.4.2.2
Multiply the numerator by the reciprocal of the denominator.
Step 1.4.2.3
Multiply the numerator and denominator of by the conjugate of to make the denominator real.
Step 1.4.2.4
Multiply.
Step 1.4.2.4.1
Combine.
Step 1.4.2.4.2
Simplify the numerator.
Step 1.4.2.4.2.1
Apply the distributive property.
Step 1.4.2.4.2.2
Multiply by .
Step 1.4.2.4.2.3
Multiply by .
Step 1.4.2.4.3
Simplify the denominator.
Step 1.4.2.4.3.1
Expand using the FOIL Method.
Step 1.4.2.4.3.1.1
Apply the distributive property.
Step 1.4.2.4.3.1.2
Apply the distributive property.
Step 1.4.2.4.3.1.3
Apply the distributive property.
Step 1.4.2.4.3.2
Simplify.
Step 1.4.2.4.3.2.1
Multiply by .
Step 1.4.2.4.3.2.2
Multiply by .
Step 1.4.2.4.3.2.3
Multiply by .
Step 1.4.2.4.3.2.4
Multiply by .
Step 1.4.2.4.3.2.5
Raise to the power of .
Step 1.4.2.4.3.2.6
Raise to the power of .
Step 1.4.2.4.3.2.7
Use the power rule to combine exponents.
Step 1.4.2.4.3.2.8
Add and .
Step 1.4.2.4.3.2.9
Add and .
Step 1.4.2.4.3.3
Simplify each term.
Step 1.4.2.4.3.3.1
Multiply by .
Step 1.4.2.4.3.3.2
Rewrite as .
Step 1.4.2.4.3.3.3
Multiply by .
Step 1.4.2.4.3.4
Add and .
Step 1.4.2.4.3.5
Add and .
Step 1.4.2.5
Rewrite as .
Step 1.4.2.6
Factor out of .
Step 1.4.2.7
Factor out of .
Step 1.4.2.8
Factor out of .
Step 1.4.2.9
Separate fractions.
Step 1.4.2.10
Simplify the expression.
Step 1.4.2.10.1
Divide by .
Step 1.4.2.10.2
Divide by .
Step 1.4.2.11
Apply the distributive property.
Step 1.4.2.12
Multiply.
Step 1.4.2.12.1
Multiply by .
Step 1.4.2.12.2
Multiply by .
Step 1.4.2.13
Apply the distributive property.
Step 1.4.2.14
Multiply.
Step 1.4.2.14.1
Multiply by .
Step 1.4.2.14.2
Multiply by .
Step 1.5
Evaluate when .
Step 1.5.1
Substitute for .
Step 1.5.2
Simplify .
Step 1.5.2.1
Simplify the denominator.
Step 1.5.2.1.1
Apply the product rule to .
Step 1.5.2.1.2
Raise to the power of .
Step 1.5.2.1.3
Apply the product rule to .
Step 1.5.2.1.4
Raise to the power of .
Step 1.5.2.1.5
Rewrite as .
Step 1.5.2.1.6
Expand using the FOIL Method.
Step 1.5.2.1.6.1
Apply the distributive property.
Step 1.5.2.1.6.2
Apply the distributive property.
Step 1.5.2.1.6.3
Apply the distributive property.
Step 1.5.2.1.7
Simplify and combine like terms.
Step 1.5.2.1.7.1
Simplify each term.
Step 1.5.2.1.7.1.1
Multiply by .
Step 1.5.2.1.7.1.2
Multiply by .
Step 1.5.2.1.7.1.3
Multiply by .
Step 1.5.2.1.7.1.4
Multiply .
Step 1.5.2.1.7.1.4.1
Raise to the power of .
Step 1.5.2.1.7.1.4.2
Raise to the power of .
Step 1.5.2.1.7.1.4.3
Use the power rule to combine exponents.
Step 1.5.2.1.7.1.4.4
Add and .
Step 1.5.2.1.7.1.4.5
Raise to the power of .
Step 1.5.2.1.7.1.4.6
Raise to the power of .
Step 1.5.2.1.7.1.4.7
Use the power rule to combine exponents.
Step 1.5.2.1.7.1.4.8
Add and .
Step 1.5.2.1.7.1.5
Rewrite as .
Step 1.5.2.1.7.1.6
Rewrite as .
Step 1.5.2.1.7.1.6.1
Use to rewrite as .
Step 1.5.2.1.7.1.6.2
Apply the power rule and multiply exponents, .
Step 1.5.2.1.7.1.6.3
Combine and .
Step 1.5.2.1.7.1.6.4
Cancel the common factor of .
Step 1.5.2.1.7.1.6.4.1
Cancel the common factor.
Step 1.5.2.1.7.1.6.4.2
Rewrite the expression.
Step 1.5.2.1.7.1.6.5
Evaluate the exponent.
Step 1.5.2.1.7.1.7
Multiply by .
Step 1.5.2.1.7.2
Subtract from .
Step 1.5.2.1.7.3
Add and .
Step 1.5.2.1.8
Reorder and .
Step 1.5.2.1.9
Cancel the common factor of and .
Step 1.5.2.1.9.1
Factor out of .
Step 1.5.2.1.9.2
Factor out of .
Step 1.5.2.1.9.3
Factor out of .
Step 1.5.2.1.9.4
Cancel the common factors.
Step 1.5.2.1.9.4.1
Factor out of .
Step 1.5.2.1.9.4.2
Cancel the common factor.
Step 1.5.2.1.9.4.3
Rewrite the expression.
Step 1.5.2.1.10
Multiply by .
Step 1.5.2.2
Multiply the numerator by the reciprocal of the denominator.
Step 1.5.2.3
Multiply the numerator and denominator of by the conjugate of to make the denominator real.
Step 1.5.2.4
Multiply.
Step 1.5.2.4.1
Combine.
Step 1.5.2.4.2
Simplify the numerator.
Step 1.5.2.4.2.1
Apply the distributive property.
Step 1.5.2.4.2.2
Multiply by .
Step 1.5.2.4.2.3
Multiply by .
Step 1.5.2.4.3
Simplify the denominator.
Step 1.5.2.4.3.1
Expand using the FOIL Method.
Step 1.5.2.4.3.1.1
Apply the distributive property.
Step 1.5.2.4.3.1.2
Apply the distributive property.
Step 1.5.2.4.3.1.3
Apply the distributive property.
Step 1.5.2.4.3.2
Simplify.
Step 1.5.2.4.3.2.1
Multiply by .
Step 1.5.2.4.3.2.2
Multiply by .
Step 1.5.2.4.3.2.3
Multiply by .
Step 1.5.2.4.3.2.4
Multiply by .
Step 1.5.2.4.3.2.5
Raise to the power of .
Step 1.5.2.4.3.2.6
Raise to the power of .
Step 1.5.2.4.3.2.7
Use the power rule to combine exponents.
Step 1.5.2.4.3.2.8
Add and .
Step 1.5.2.4.3.2.9
Subtract from .
Step 1.5.2.4.3.3
Simplify each term.
Step 1.5.2.4.3.3.1
Multiply by .
Step 1.5.2.4.3.3.2
Rewrite as .
Step 1.5.2.4.3.3.3
Multiply by .
Step 1.5.2.4.3.4
Add and .
Step 1.5.2.4.3.5
Add and .
Step 1.5.2.5
Rewrite as .
Step 1.5.2.6
Factor out of .
Step 1.5.2.7
Factor out of .
Step 1.5.2.8
Factor out of .
Step 1.5.2.9
Separate fractions.
Step 1.5.2.10
Simplify the expression.
Step 1.5.2.10.1
Divide by .
Step 1.5.2.10.2
Divide by .
Step 1.5.2.11
Apply the distributive property.
Step 1.5.2.12
Multiply.
Step 1.5.2.12.1
Multiply by .
Step 1.5.2.12.2
Multiply by .
Step 1.5.2.13
Apply the distributive property.
Step 1.5.2.14
Multiply.
Step 1.5.2.14.1
Multiply by .
Step 1.5.2.14.2
Multiply by .
Step 1.6
List all of the solutions.
Step 2
The area between the given curves is unbounded.
Unbounded area
Step 3