Calculus Examples

Find the Area Between the Curves y = square root of 4x , y=(x^2)/4
,
Step 1
Solve by substitution to find the intersection between the curves.
Tap for more steps...
Step 1.1
Eliminate the equal sides of each equation and combine.
Step 1.2
Solve for .
Tap for more steps...
Step 1.2.1
To remove the radical on the left side of the equation, square both sides of the equation.
Step 1.2.2
Simplify each side of the equation.
Tap for more steps...
Step 1.2.2.1
Use to rewrite as .
Step 1.2.2.2
Simplify the left side.
Tap for more steps...
Step 1.2.2.2.1
Simplify .
Tap for more steps...
Step 1.2.2.2.1.1
Multiply the exponents in .
Tap for more steps...
Step 1.2.2.2.1.1.1
Apply the power rule and multiply exponents, .
Step 1.2.2.2.1.1.2
Cancel the common factor of .
Tap for more steps...
Step 1.2.2.2.1.1.2.1
Cancel the common factor.
Step 1.2.2.2.1.1.2.2
Rewrite the expression.
Step 1.2.2.2.1.2
Simplify.
Step 1.2.2.3
Simplify the right side.
Tap for more steps...
Step 1.2.2.3.1
Simplify .
Tap for more steps...
Step 1.2.2.3.1.1
Apply the product rule to .
Step 1.2.2.3.1.2
Multiply the exponents in .
Tap for more steps...
Step 1.2.2.3.1.2.1
Apply the power rule and multiply exponents, .
Step 1.2.2.3.1.2.2
Multiply by .
Step 1.2.2.3.1.3
Raise to the power of .
Step 1.2.3
Solve for .
Tap for more steps...
Step 1.2.3.1
Multiply both sides by .
Step 1.2.3.2
Simplify.
Tap for more steps...
Step 1.2.3.2.1
Simplify the left side.
Tap for more steps...
Step 1.2.3.2.1.1
Multiply by .
Step 1.2.3.2.2
Simplify the right side.
Tap for more steps...
Step 1.2.3.2.2.1
Cancel the common factor of .
Tap for more steps...
Step 1.2.3.2.2.1.1
Cancel the common factor.
Step 1.2.3.2.2.1.2
Rewrite the expression.
Step 1.2.3.3
Solve for .
Tap for more steps...
Step 1.2.3.3.1
Subtract from both sides of the equation.
Step 1.2.3.3.2
Factor the left side of the equation.
Tap for more steps...
Step 1.2.3.3.2.1
Factor out of .
Tap for more steps...
Step 1.2.3.3.2.1.1
Factor out of .
Step 1.2.3.3.2.1.2
Factor out of .
Step 1.2.3.3.2.1.3
Factor out of .
Step 1.2.3.3.2.2
Rewrite as .
Step 1.2.3.3.2.3
Since both terms are perfect cubes, factor using the difference of cubes formula, where and .
Step 1.2.3.3.2.4
Factor.
Tap for more steps...
Step 1.2.3.3.2.4.1
Raise to the power of .
Step 1.2.3.3.2.4.2
Remove unnecessary parentheses.
Step 1.2.3.3.3
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 1.2.3.3.4
Set equal to .
Step 1.2.3.3.5
Set equal to and solve for .
Tap for more steps...
Step 1.2.3.3.5.1
Set equal to .
Step 1.2.3.3.5.2
Solve for .
Tap for more steps...
Step 1.2.3.3.5.2.1
Subtract from both sides of the equation.
Step 1.2.3.3.5.2.2
Divide each term in by and simplify.
Tap for more steps...
Step 1.2.3.3.5.2.2.1
Divide each term in by .
Step 1.2.3.3.5.2.2.2
Simplify the left side.
Tap for more steps...
Step 1.2.3.3.5.2.2.2.1
Dividing two negative values results in a positive value.
Step 1.2.3.3.5.2.2.2.2
Divide by .
Step 1.2.3.3.5.2.2.3
Simplify the right side.
Tap for more steps...
Step 1.2.3.3.5.2.2.3.1
Divide by .
Step 1.2.3.3.6
Set equal to and solve for .
Tap for more steps...
Step 1.2.3.3.6.1
Set equal to .
Step 1.2.3.3.6.2
Solve for .
Tap for more steps...
Step 1.2.3.3.6.2.1
Use the quadratic formula to find the solutions.
Step 1.2.3.3.6.2.2
Substitute the values , , and into the quadratic formula and solve for .
Step 1.2.3.3.6.2.3
Simplify.
Tap for more steps...
Step 1.2.3.3.6.2.3.1
Simplify the numerator.
Tap for more steps...
Step 1.2.3.3.6.2.3.1.1
Raise to the power of .
Step 1.2.3.3.6.2.3.1.2
Multiply .
Tap for more steps...
Step 1.2.3.3.6.2.3.1.2.1
Multiply by .
Step 1.2.3.3.6.2.3.1.2.2
Multiply by .
Step 1.2.3.3.6.2.3.1.3
Subtract from .
Step 1.2.3.3.6.2.3.1.4
Rewrite as .
Step 1.2.3.3.6.2.3.1.5
Rewrite as .
Step 1.2.3.3.6.2.3.1.6
Rewrite as .
Step 1.2.3.3.6.2.3.1.7
Rewrite as .
Tap for more steps...
Step 1.2.3.3.6.2.3.1.7.1
Factor out of .
Step 1.2.3.3.6.2.3.1.7.2
Rewrite as .
Step 1.2.3.3.6.2.3.1.8
Pull terms out from under the radical.
Step 1.2.3.3.6.2.3.1.9
Move to the left of .
Step 1.2.3.3.6.2.3.2
Multiply by .
Step 1.2.3.3.6.2.3.3
Simplify .
Step 1.2.3.3.6.2.4
Simplify the expression to solve for the portion of the .
Tap for more steps...
Step 1.2.3.3.6.2.4.1
Simplify the numerator.
Tap for more steps...
Step 1.2.3.3.6.2.4.1.1
Raise to the power of .
Step 1.2.3.3.6.2.4.1.2
Multiply .
Tap for more steps...
Step 1.2.3.3.6.2.4.1.2.1
Multiply by .
Step 1.2.3.3.6.2.4.1.2.2
Multiply by .
Step 1.2.3.3.6.2.4.1.3
Subtract from .
Step 1.2.3.3.6.2.4.1.4
Rewrite as .
Step 1.2.3.3.6.2.4.1.5
Rewrite as .
Step 1.2.3.3.6.2.4.1.6
Rewrite as .
Step 1.2.3.3.6.2.4.1.7
Rewrite as .
Tap for more steps...
Step 1.2.3.3.6.2.4.1.7.1
Factor out of .
Step 1.2.3.3.6.2.4.1.7.2
Rewrite as .
Step 1.2.3.3.6.2.4.1.8
Pull terms out from under the radical.
Step 1.2.3.3.6.2.4.1.9
Move to the left of .
Step 1.2.3.3.6.2.4.2
Multiply by .
Step 1.2.3.3.6.2.4.3
Simplify .
Step 1.2.3.3.6.2.4.4
Change the to .
Step 1.2.3.3.6.2.5
Simplify the expression to solve for the portion of the .
Tap for more steps...
Step 1.2.3.3.6.2.5.1
Simplify the numerator.
Tap for more steps...
Step 1.2.3.3.6.2.5.1.1
Raise to the power of .
Step 1.2.3.3.6.2.5.1.2
Multiply .
Tap for more steps...
Step 1.2.3.3.6.2.5.1.2.1
Multiply by .
Step 1.2.3.3.6.2.5.1.2.2
Multiply by .
Step 1.2.3.3.6.2.5.1.3
Subtract from .
Step 1.2.3.3.6.2.5.1.4
Rewrite as .
Step 1.2.3.3.6.2.5.1.5
Rewrite as .
Step 1.2.3.3.6.2.5.1.6
Rewrite as .
Step 1.2.3.3.6.2.5.1.7
Rewrite as .
Tap for more steps...
Step 1.2.3.3.6.2.5.1.7.1
Factor out of .
Step 1.2.3.3.6.2.5.1.7.2
Rewrite as .
Step 1.2.3.3.6.2.5.1.8
Pull terms out from under the radical.
Step 1.2.3.3.6.2.5.1.9
Move to the left of .
Step 1.2.3.3.6.2.5.2
Multiply by .
Step 1.2.3.3.6.2.5.3
Simplify .
Step 1.2.3.3.6.2.5.4
Change the to .
Step 1.2.3.3.6.2.6
The final answer is the combination of both solutions.
Step 1.2.3.3.7
The final solution is all the values that make true.
Step 1.3
Evaluate when .
Tap for more steps...
Step 1.3.1
Substitute for .
Step 1.3.2
Substitute for in and solve for .
Tap for more steps...
Step 1.3.2.1
Remove parentheses.
Step 1.3.2.2
Simplify .
Tap for more steps...
Step 1.3.2.2.1
Raising to any positive power yields .
Step 1.3.2.2.2
Divide by .
Step 1.4
Evaluate when .
Tap for more steps...
Step 1.4.1
Substitute for .
Step 1.4.2
Substitute for in and solve for .
Tap for more steps...
Step 1.4.2.1
Remove parentheses.
Step 1.4.2.2
Cancel the common factor of and .
Tap for more steps...
Step 1.4.2.2.1
Factor out of .
Step 1.4.2.2.2
Cancel the common factors.
Tap for more steps...
Step 1.4.2.2.2.1
Factor out of .
Step 1.4.2.2.2.2
Cancel the common factor.
Step 1.4.2.2.2.3
Rewrite the expression.
Step 1.4.2.2.2.4
Divide by .
Step 1.5
Evaluate when .
Tap for more steps...
Step 1.5.1
Substitute for .
Step 1.5.2
Simplify .
Tap for more steps...
Step 1.5.2.1
Rewrite as .
Step 1.5.2.2
Expand using the FOIL Method.
Tap for more steps...
Step 1.5.2.2.1
Apply the distributive property.
Step 1.5.2.2.2
Apply the distributive property.
Step 1.5.2.2.3
Apply the distributive property.
Step 1.5.2.3
Simplify and combine like terms.
Tap for more steps...
Step 1.5.2.3.1
Simplify each term.
Tap for more steps...
Step 1.5.2.3.1.1
Multiply by .
Step 1.5.2.3.1.2
Multiply by .
Step 1.5.2.3.1.3
Multiply by .
Step 1.5.2.3.1.4
Multiply .
Tap for more steps...
Step 1.5.2.3.1.4.1
Multiply by .
Step 1.5.2.3.1.4.2
Raise to the power of .
Step 1.5.2.3.1.4.3
Raise to the power of .
Step 1.5.2.3.1.4.4
Use the power rule to combine exponents.
Step 1.5.2.3.1.4.5
Add and .
Step 1.5.2.3.1.4.6
Raise to the power of .
Step 1.5.2.3.1.4.7
Raise to the power of .
Step 1.5.2.3.1.4.8
Use the power rule to combine exponents.
Step 1.5.2.3.1.4.9
Add and .
Step 1.5.2.3.1.5
Rewrite as .
Step 1.5.2.3.1.6
Multiply by .
Step 1.5.2.3.1.7
Rewrite as .
Tap for more steps...
Step 1.5.2.3.1.7.1
Use to rewrite as .
Step 1.5.2.3.1.7.2
Apply the power rule and multiply exponents, .
Step 1.5.2.3.1.7.3
Combine and .
Step 1.5.2.3.1.7.4
Cancel the common factor of .
Tap for more steps...
Step 1.5.2.3.1.7.4.1
Cancel the common factor.
Step 1.5.2.3.1.7.4.2
Rewrite the expression.
Step 1.5.2.3.1.7.5
Evaluate the exponent.
Step 1.5.2.3.1.8
Multiply by .
Step 1.5.2.3.2
Subtract from .
Step 1.5.2.3.3
Subtract from .
Step 1.5.2.4
Reorder and .
Step 1.5.2.5
Cancel the common factor of and .
Tap for more steps...
Step 1.5.2.5.1
Factor out of .
Step 1.5.2.5.2
Factor out of .
Step 1.5.2.5.3
Factor out of .
Step 1.5.2.5.4
Cancel the common factors.
Tap for more steps...
Step 1.5.2.5.4.1
Factor out of .
Step 1.5.2.5.4.2
Cancel the common factor.
Step 1.5.2.5.4.3
Rewrite the expression.
Step 1.5.2.5.4.4
Divide by .
Step 1.6
Evaluate when .
Tap for more steps...
Step 1.6.1
Substitute for .
Step 1.6.2
Simplify .
Tap for more steps...
Step 1.6.2.1
Rewrite as .
Step 1.6.2.2
Expand using the FOIL Method.
Tap for more steps...
Step 1.6.2.2.1
Apply the distributive property.
Step 1.6.2.2.2
Apply the distributive property.
Step 1.6.2.2.3
Apply the distributive property.
Step 1.6.2.3
Simplify and combine like terms.
Tap for more steps...
Step 1.6.2.3.1
Simplify each term.
Tap for more steps...
Step 1.6.2.3.1.1
Multiply by .
Step 1.6.2.3.1.2
Multiply by .
Step 1.6.2.3.1.3
Multiply by .
Step 1.6.2.3.1.4
Multiply .
Tap for more steps...
Step 1.6.2.3.1.4.1
Multiply by .
Step 1.6.2.3.1.4.2
Raise to the power of .
Step 1.6.2.3.1.4.3
Raise to the power of .
Step 1.6.2.3.1.4.4
Use the power rule to combine exponents.
Step 1.6.2.3.1.4.5
Add and .
Step 1.6.2.3.1.4.6
Raise to the power of .
Step 1.6.2.3.1.4.7
Raise to the power of .
Step 1.6.2.3.1.4.8
Use the power rule to combine exponents.
Step 1.6.2.3.1.4.9
Add and .
Step 1.6.2.3.1.5
Rewrite as .
Step 1.6.2.3.1.6
Multiply by .
Step 1.6.2.3.1.7
Rewrite as .
Tap for more steps...
Step 1.6.2.3.1.7.1
Use to rewrite as .
Step 1.6.2.3.1.7.2
Apply the power rule and multiply exponents, .
Step 1.6.2.3.1.7.3
Combine and .
Step 1.6.2.3.1.7.4
Cancel the common factor of .
Tap for more steps...
Step 1.6.2.3.1.7.4.1
Cancel the common factor.
Step 1.6.2.3.1.7.4.2
Rewrite the expression.
Step 1.6.2.3.1.7.5
Evaluate the exponent.
Step 1.6.2.3.1.8
Multiply by .
Step 1.6.2.3.2
Subtract from .
Step 1.6.2.3.3
Add and .
Step 1.6.2.4
Reorder and .
Step 1.6.2.5
Cancel the common factor of and .
Tap for more steps...
Step 1.6.2.5.1
Factor out of .
Step 1.6.2.5.2
Factor out of .
Step 1.6.2.5.3
Factor out of .
Step 1.6.2.5.4
Cancel the common factors.
Tap for more steps...
Step 1.6.2.5.4.1
Factor out of .
Step 1.6.2.5.4.2
Cancel the common factor.
Step 1.6.2.5.4.3
Rewrite the expression.
Step 1.6.2.5.4.4
Divide by .
Step 1.7
List all of the solutions.
Step 2
The area between the given curves is unbounded.
Unbounded area
Step 3