Enter a problem...
Calculus Examples
Step 1
Step 1.1
Use the quadratic formula to find the solutions.
Step 1.2
Substitute the values , , and into the quadratic formula and solve for .
Step 1.3
Simplify.
Step 1.3.1
Simplify the numerator.
Step 1.3.1.1
Raise to the power of .
Step 1.3.1.2
Multiply by .
Step 1.3.1.3
Apply the distributive property.
Step 1.3.1.4
Simplify.
Step 1.3.1.4.1
Multiply by .
Step 1.3.1.4.2
Multiply by .
Step 1.3.1.4.3
Multiply by .
Step 1.3.1.5
Subtract from .
Step 1.3.1.6
Factor out of .
Step 1.3.1.6.1
Factor out of .
Step 1.3.1.6.2
Factor out of .
Step 1.3.1.6.3
Factor out of .
Step 1.3.1.6.4
Factor out of .
Step 1.3.1.6.5
Factor out of .
Step 1.3.1.7
Rewrite as .
Step 1.3.1.7.1
Rewrite as .
Step 1.3.1.7.2
Rewrite as .
Step 1.3.1.8
Pull terms out from under the radical.
Step 1.3.1.9
Raise to the power of .
Step 1.3.2
Multiply by .
Step 1.3.3
Simplify .
Step 1.4
Simplify the expression to solve for the portion of the .
Step 1.4.1
Simplify the numerator.
Step 1.4.1.1
Raise to the power of .
Step 1.4.1.2
Multiply by .
Step 1.4.1.3
Apply the distributive property.
Step 1.4.1.4
Simplify.
Step 1.4.1.4.1
Multiply by .
Step 1.4.1.4.2
Multiply by .
Step 1.4.1.4.3
Multiply by .
Step 1.4.1.5
Subtract from .
Step 1.4.1.6
Factor out of .
Step 1.4.1.6.1
Factor out of .
Step 1.4.1.6.2
Factor out of .
Step 1.4.1.6.3
Factor out of .
Step 1.4.1.6.4
Factor out of .
Step 1.4.1.6.5
Factor out of .
Step 1.4.1.7
Rewrite as .
Step 1.4.1.7.1
Rewrite as .
Step 1.4.1.7.2
Rewrite as .
Step 1.4.1.8
Pull terms out from under the radical.
Step 1.4.1.9
Raise to the power of .
Step 1.4.2
Multiply by .
Step 1.4.3
Simplify .
Step 1.4.4
Change the to .
Step 1.4.5
Rewrite as .
Step 1.4.6
Factor out of .
Step 1.4.7
Factor out of .
Step 1.4.8
Move the negative in front of the fraction.
Step 1.5
Simplify the expression to solve for the portion of the .
Step 1.5.1
Simplify the numerator.
Step 1.5.1.1
Raise to the power of .
Step 1.5.1.2
Multiply by .
Step 1.5.1.3
Apply the distributive property.
Step 1.5.1.4
Simplify.
Step 1.5.1.4.1
Multiply by .
Step 1.5.1.4.2
Multiply by .
Step 1.5.1.4.3
Multiply by .
Step 1.5.1.5
Subtract from .
Step 1.5.1.6
Factor out of .
Step 1.5.1.6.1
Factor out of .
Step 1.5.1.6.2
Factor out of .
Step 1.5.1.6.3
Factor out of .
Step 1.5.1.6.4
Factor out of .
Step 1.5.1.6.5
Factor out of .
Step 1.5.1.7
Rewrite as .
Step 1.5.1.7.1
Rewrite as .
Step 1.5.1.7.2
Rewrite as .
Step 1.5.1.8
Pull terms out from under the radical.
Step 1.5.1.9
Raise to the power of .
Step 1.5.2
Multiply by .
Step 1.5.3
Simplify .
Step 1.5.4
Change the to .
Step 1.5.5
Factor out of .
Step 1.5.5.1
Rewrite as .
Step 1.5.5.2
Factor out of .
Step 1.5.5.3
Factor out of .
Step 1.5.5.4
Rewrite as .
Step 1.5.6
Move the negative in front of the fraction.
Step 1.6
The final answer is the combination of both solutions.
Step 2
Set each solution of as a function of .
Step 3
Step 3.1
Differentiate both sides of the equation.
Step 3.2
Differentiate the left side of the equation.
Step 3.2.1
By the Sum Rule, the derivative of with respect to is .
Step 3.2.2
Evaluate .
Step 3.2.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 3.2.2.2
Differentiate using the Power Rule which states that is where .
Step 3.2.2.3
Multiply by .
Step 3.2.3
Evaluate .
Step 3.2.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 3.2.3.2
Differentiate using the chain rule, which states that is where and .
Step 3.2.3.2.1
To apply the Chain Rule, set as .
Step 3.2.3.2.2
Differentiate using the Power Rule which states that is where .
Step 3.2.3.2.3
Replace all occurrences of with .
Step 3.2.3.3
Rewrite as .
Step 3.2.3.4
Multiply by .
Step 3.2.4
Evaluate .
Step 3.2.4.1
Since is constant with respect to , the derivative of with respect to is .
Step 3.2.4.2
Differentiate using the Power Rule which states that is where .
Step 3.2.4.3
Multiply by .
Step 3.2.5
Evaluate .
Step 3.2.5.1
Since is constant with respect to , the derivative of with respect to is .
Step 3.2.5.2
Rewrite as .
Step 3.2.6
Since is constant with respect to , the derivative of with respect to is .
Step 3.2.7
Simplify.
Step 3.2.7.1
Add and .
Step 3.2.7.2
Reorder terms.
Step 3.3
Since is constant with respect to , the derivative of with respect to is .
Step 3.4
Reform the equation by setting the left side equal to the right side.
Step 3.5
Solve for .
Step 3.5.1
Move all terms not containing to the right side of the equation.
Step 3.5.1.1
Subtract from both sides of the equation.
Step 3.5.1.2
Add to both sides of the equation.
Step 3.5.2
Factor out of .
Step 3.5.2.1
Factor out of .
Step 3.5.2.2
Factor out of .
Step 3.5.2.3
Factor out of .
Step 3.5.3
Divide each term in by and simplify.
Step 3.5.3.1
Divide each term in by .
Step 3.5.3.2
Simplify the left side.
Step 3.5.3.2.1
Cancel the common factor of .
Step 3.5.3.2.1.1
Cancel the common factor.
Step 3.5.3.2.1.2
Rewrite the expression.
Step 3.5.3.2.2
Cancel the common factor of .
Step 3.5.3.2.2.1
Cancel the common factor.
Step 3.5.3.2.2.2
Divide by .
Step 3.5.3.3
Simplify the right side.
Step 3.5.3.3.1
Simplify each term.
Step 3.5.3.3.1.1
Cancel the common factor of and .
Step 3.5.3.3.1.1.1
Factor out of .
Step 3.5.3.3.1.1.2
Cancel the common factors.
Step 3.5.3.3.1.1.2.1
Factor out of .
Step 3.5.3.3.1.1.2.2
Cancel the common factor.
Step 3.5.3.3.1.1.2.3
Rewrite the expression.
Step 3.5.3.3.1.2
Move the negative in front of the fraction.
Step 3.5.3.3.1.3
Cancel the common factor of and .
Step 3.5.3.3.1.3.1
Factor out of .
Step 3.5.3.3.1.3.2
Cancel the common factors.
Step 3.5.3.3.1.3.2.1
Factor out of .
Step 3.5.3.3.1.3.2.2
Cancel the common factor.
Step 3.5.3.3.1.3.2.3
Rewrite the expression.
Step 3.6
Replace with .
Step 4
Step 4.1
Subtract from both sides of the equation.
Step 4.2
Since the expression on each side of the equation has the same denominator, the numerators must be equal.
Step 4.3
Divide each term in by and simplify.
Step 4.3.1
Divide each term in by .
Step 4.3.2
Simplify the left side.
Step 4.3.2.1
Cancel the common factor of .
Step 4.3.2.1.1
Cancel the common factor.
Step 4.3.2.1.2
Divide by .
Step 4.3.3
Simplify the right side.
Step 4.3.3.1
Divide by .
Step 5
Step 5.1
Replace the variable with in the expression.
Step 5.2
Simplify the result.
Step 5.2.1
Simplify the numerator.
Step 5.2.1.1
One to any power is one.
Step 5.2.1.2
Multiply by .
Step 5.2.1.3
Multiply by .
Step 5.2.1.4
Add and .
Step 5.2.1.5
Add and .
Step 5.2.2
The final answer is .
Step 6
Step 6.1
Replace the variable with in the expression.
Step 6.2
Simplify the result.
Step 6.2.1
Simplify the numerator.
Step 6.2.1.1
One to any power is one.
Step 6.2.1.2
Multiply by .
Step 6.2.1.3
Multiply by .
Step 6.2.1.4
Add and .
Step 6.2.1.5
Add and .
Step 6.2.2
The final answer is .
Step 7
The horizontal tangent lines are
Step 8