Calculus Examples

Find the Second Derivative h(t)=e^(-0.3t)sin(5t)
Step 1
Find the first derivative.
Tap for more steps...
Step 1.1
Differentiate using the Product Rule which states that is where and .
Step 1.2
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 1.2.1
To apply the Chain Rule, set as .
Step 1.2.2
The derivative of with respect to is .
Step 1.2.3
Replace all occurrences of with .
Step 1.3
Differentiate.
Tap for more steps...
Step 1.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.3.2
Differentiate using the Power Rule which states that is where .
Step 1.3.3
Simplify the expression.
Tap for more steps...
Step 1.3.3.1
Multiply by .
Step 1.3.3.2
Move to the left of .
Step 1.4
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 1.4.1
To apply the Chain Rule, set as .
Step 1.4.2
Differentiate using the Exponential Rule which states that is where =.
Step 1.4.3
Replace all occurrences of with .
Step 1.5
Differentiate.
Tap for more steps...
Step 1.5.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.5.2
Differentiate using the Power Rule which states that is where .
Step 1.5.3
Simplify the expression.
Tap for more steps...
Step 1.5.3.1
Multiply by .
Step 1.5.3.2
Move to the left of .
Step 1.5.3.3
Reorder terms.
Step 2
Find the second derivative.
Tap for more steps...
Step 2.1
By the Sum Rule, the derivative of with respect to is .
Step 2.2
Evaluate .
Tap for more steps...
Step 2.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.2.2
Differentiate using the Product Rule which states that is where and .
Step 2.2.3
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 2.2.3.1
To apply the Chain Rule, set as .
Step 2.2.3.2
The derivative of with respect to is .
Step 2.2.3.3
Replace all occurrences of with .
Step 2.2.4
Since is constant with respect to , the derivative of with respect to is .
Step 2.2.5
Differentiate using the Power Rule which states that is where .
Step 2.2.6
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 2.2.6.1
To apply the Chain Rule, set as .
Step 2.2.6.2
Differentiate using the Exponential Rule which states that is where =.
Step 2.2.6.3
Replace all occurrences of with .
Step 2.2.7
Since is constant with respect to , the derivative of with respect to is .
Step 2.2.8
Differentiate using the Power Rule which states that is where .
Step 2.2.9
Multiply by .
Step 2.2.10
Multiply by .
Step 2.2.11
Multiply by .
Step 2.2.12
Move to the left of .
Step 2.3
Evaluate .
Tap for more steps...
Step 2.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.3.2
Differentiate using the Product Rule which states that is where and .
Step 2.3.3
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 2.3.3.1
To apply the Chain Rule, set as .
Step 2.3.3.2
The derivative of with respect to is .
Step 2.3.3.3
Replace all occurrences of with .
Step 2.3.4
Since is constant with respect to , the derivative of with respect to is .
Step 2.3.5
Differentiate using the Power Rule which states that is where .
Step 2.3.6
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 2.3.6.1
To apply the Chain Rule, set as .
Step 2.3.6.2
Differentiate using the Exponential Rule which states that is where =.
Step 2.3.6.3
Replace all occurrences of with .
Step 2.3.7
Since is constant with respect to , the derivative of with respect to is .
Step 2.3.8
Differentiate using the Power Rule which states that is where .
Step 2.3.9
Multiply by .
Step 2.3.10
Move to the left of .
Step 2.3.11
Multiply by .
Step 2.3.12
Move to the left of .
Step 2.4
Simplify.
Tap for more steps...
Step 2.4.1
Apply the distributive property.
Step 2.4.2
Apply the distributive property.
Step 2.4.3
Combine terms.
Tap for more steps...
Step 2.4.3.1
Multiply by .
Step 2.4.3.2
Multiply by .
Step 2.4.3.3
Multiply by .
Step 2.4.3.4
Multiply by .
Step 2.4.3.5
Subtract from .
Tap for more steps...
Step 2.4.3.5.1
Move .
Step 2.4.3.5.2
Subtract from .
Step 2.4.3.6
Add and .
Tap for more steps...
Step 2.4.3.6.1
Move .
Step 2.4.3.6.2
Add and .
Step 3
The second derivative of with respect to is .