Enter a problem...
Calculus Examples
Step 1
Step 1.1
Differentiate using the chain rule, which states that is where and .
Step 1.1.1
To apply the Chain Rule, set as .
Step 1.1.2
Differentiate using the Power Rule which states that is where .
Step 1.1.3
Replace all occurrences of with .
Step 1.2
Differentiate.
Step 1.2.1
By the Sum Rule, the derivative of with respect to is .
Step 1.2.2
Since is constant with respect to , the derivative of with respect to is .
Step 1.2.3
Differentiate using the Power Rule which states that is where .
Step 1.2.4
Multiply by .
Step 1.2.5
Since is constant with respect to , the derivative of with respect to is .
Step 1.2.6
Simplify the expression.
Step 1.2.6.1
Add and .
Step 1.2.6.2
Multiply by .
Step 1.2.6.3
Reorder the factors of .
Step 2
Step 2.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.2
Differentiate using the Product Rule which states that is where and .
Step 2.3
Differentiate using the chain rule, which states that is where and .
Step 2.3.1
To apply the Chain Rule, set as .
Step 2.3.2
Differentiate using the Power Rule which states that is where .
Step 2.3.3
Replace all occurrences of with .
Step 2.4
Differentiate.
Step 2.4.1
By the Sum Rule, the derivative of with respect to is .
Step 2.4.2
Since is constant with respect to , the derivative of with respect to is .
Step 2.4.3
Differentiate using the Power Rule which states that is where .
Step 2.4.4
Multiply by .
Step 2.4.5
Since is constant with respect to , the derivative of with respect to is .
Step 2.4.6
Simplify the expression.
Step 2.4.6.1
Add and .
Step 2.4.6.2
Multiply by .
Step 2.5
Multiply by by adding the exponents.
Step 2.5.1
Move .
Step 2.5.2
Use the power rule to combine exponents.
Step 2.5.3
Add and .
Step 2.6
Differentiate using the Power Rule which states that is where .
Step 2.7
Move to the left of .
Step 2.8
Simplify.
Step 2.8.1
Apply the distributive property.
Step 2.8.2
Multiply by .
Step 2.8.3
Multiply by .
Step 2.8.4
Factor out of .
Step 2.8.4.1
Factor out of .
Step 2.8.4.2
Factor out of .
Step 2.8.4.3
Factor out of .
Step 3
The second derivative of with respect to is .