Enter a problem...
Calculus Examples
Step 1
Write as a function.
Step 2
The function can be found by finding the indefinite integral of the derivative .
Step 3
Set up the integral to solve.
Step 4
Step 4.1
Rewrite as .
Step 4.2
Expand using the FOIL Method.
Step 4.2.1
Apply the distributive property.
Step 4.2.2
Apply the distributive property.
Step 4.2.3
Apply the distributive property.
Step 4.3
Simplify and combine like terms.
Step 4.3.1
Simplify each term.
Step 4.3.1.1
Multiply by .
Step 4.3.1.2
Multiply by .
Step 4.3.1.3
Multiply by .
Step 4.3.1.4
Multiply .
Step 4.3.1.4.1
Multiply by .
Step 4.3.1.4.2
Raise to the power of .
Step 4.3.1.4.3
Raise to the power of .
Step 4.3.1.4.4
Use the power rule to combine exponents.
Step 4.3.1.4.5
Add and .
Step 4.3.2
Add and .
Step 4.4
Combine and .
Step 5
Split the single integral into multiple integrals.
Step 6
Apply the constant rule.
Step 7
Since is constant with respect to , move out of the integral.
Step 8
The integral of with respect to is .
Step 9
Step 9.1
Move out of the denominator by raising it to the power.
Step 9.2
Multiply the exponents in .
Step 9.2.1
Apply the power rule and multiply exponents, .
Step 9.2.2
Multiply by .
Step 10
By the Power Rule, the integral of with respect to is .
Step 11
Simplify.
Step 12
The answer is the antiderivative of the function .