Enter a problem...
Calculus Examples
Step 1
Step 1.1
Find the first derivative.
Step 1.1.1
By the Sum Rule, the derivative of with respect to is .
Step 1.1.2
Evaluate .
Step 1.1.2.1
Differentiate using the Power Rule which states that is where .
Step 1.1.2.2
To write as a fraction with a common denominator, multiply by .
Step 1.1.2.3
Combine and .
Step 1.1.2.4
Combine the numerators over the common denominator.
Step 1.1.2.5
Simplify the numerator.
Step 1.1.2.5.1
Multiply by .
Step 1.1.2.5.2
Subtract from .
Step 1.1.2.6
Move the negative in front of the fraction.
Step 1.1.3
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.4
Simplify.
Step 1.1.4.1
Rewrite the expression using the negative exponent rule .
Step 1.1.4.2
Combine terms.
Step 1.1.4.2.1
Multiply by .
Step 1.1.4.2.2
Add and .
Step 1.2
The first derivative of with respect to is .
Step 2
Step 2.1
Set the first derivative equal to .
Step 2.2
Set the numerator equal to zero.
Step 2.3
Since , there are no solutions.
No solution
No solution
Step 3
There are no values of in the domain of the original problem where the derivative is or undefined.
No critical points found
Step 4
Step 4.1
Apply the rule to rewrite the exponentiation as a radical.
Step 4.2
Set the denominator in equal to to find where the expression is undefined.
Step 4.3
Solve for .
Step 4.3.1
To remove the radical on the left side of the equation, raise both sides of the equation to the power of .
Step 4.3.2
Simplify each side of the equation.
Step 4.3.2.1
Use to rewrite as .
Step 4.3.2.2
Simplify the left side.
Step 4.3.2.2.1
Simplify .
Step 4.3.2.2.1.1
Apply the product rule to .
Step 4.3.2.2.1.2
Raise to the power of .
Step 4.3.2.2.1.3
Multiply the exponents in .
Step 4.3.2.2.1.3.1
Apply the power rule and multiply exponents, .
Step 4.3.2.2.1.3.2
Cancel the common factor of .
Step 4.3.2.2.1.3.2.1
Cancel the common factor.
Step 4.3.2.2.1.3.2.2
Rewrite the expression.
Step 4.3.2.3
Simplify the right side.
Step 4.3.2.3.1
Raising to any positive power yields .
Step 4.3.3
Solve for .
Step 4.3.3.1
Divide each term in by and simplify.
Step 4.3.3.1.1
Divide each term in by .
Step 4.3.3.1.2
Simplify the left side.
Step 4.3.3.1.2.1
Cancel the common factor of .
Step 4.3.3.1.2.1.1
Cancel the common factor.
Step 4.3.3.1.2.1.2
Divide by .
Step 4.3.3.1.3
Simplify the right side.
Step 4.3.3.1.3.1
Divide by .
Step 4.3.3.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 4.3.3.3
Simplify .
Step 4.3.3.3.1
Rewrite as .
Step 4.3.3.3.2
Pull terms out from under the radical, assuming positive real numbers.
Step 4.3.3.3.3
Plus or minus is .
Step 5
After finding the point that makes the derivative equal to or undefined, the interval to check where is increasing and where it is decreasing is .
Step 6
Step 6.1
Replace the variable with in the expression.
Step 6.2
Simplify the result.
Step 6.2.1
Simplify the denominator.
Step 6.2.1.1
Rewrite as .
Step 6.2.1.2
Apply the power rule and multiply exponents, .
Step 6.2.1.3
Cancel the common factor of .
Step 6.2.1.3.1
Cancel the common factor.
Step 6.2.1.3.2
Rewrite the expression.
Step 6.2.1.4
Raise to the power of .
Step 6.2.2
Multiply by .
Step 6.2.3
The final answer is .
Step 6.3
At the derivative is . Since this is positive, the function is increasing on .
Increasing on since
Increasing on since
Step 7
Step 7.1
Replace the variable with in the expression.
Step 7.2
Simplify the result.
Step 7.2.1
One to any power is one.
Step 7.2.2
Multiply by .
Step 7.2.3
The final answer is .
Step 7.3
At the derivative is . Since this is positive, the function is increasing on .
Increasing on since
Increasing on since
Step 8
List the intervals on which the function is increasing and decreasing.
Increasing on:
Step 9